A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.
Qi SHENYun-hui ZHANGYing-ju FANZheng-he XUZhong-Xi SUN
The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and two dimensional(2D) correlation analysis.The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal.The appearance of spectral peaks at 1203 cm^-1,1033 cm^-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO.According to 1R intensity changes after rinsing with deionized water and a NaOH solution,the adsorption was proved to be a chemisorption type.The competition between xanthate and OH^- for the surfaces leads to desorption of xanthate at higher pH.The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process,and the results indicated that xanthate micelles were formed at the surfaces.The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g^-1 after 150 min.
Qi ShenYing-Ju FanWei-Min ZhangBo-Li ZhuRu WangZhong-Xi Sun