ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstructure of the varistor ceramics. A DC parameter instrument was applied to investigate the electronic properties and V-I characteristics. The XRD analysis of Eu2O3-doped ZnO-Bi2O3-based varistor ceramics shows that the ZnO, Eu-containing Bi-rich, Zn7Sb2O12-type spinel and Zn2Bi3Sb3O14-type which is the pyrochlore phase are present. With increasing Eu2O3 content, the average size of ZnO grain firstly decreases and then increases. The grain boundary defect model was particularly used to explain the excellent nonlinearity of ZnO-Bi2O3-based varistor ceramics with the addition of0.1% Eu2O3 and sintered at 950 ℃.
Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals of ZnO grow well.Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness.The nonlinear V–I characteristics of the films show that La2 O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion,with the leakage current of 0.25 mA,the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.
A series of ZnO-Bi2O3-based varistor ceramics doped with 0-0.4 mol.% Sc2O3 were prepared by high-energy ball milling and sintered at temperatures between 1000 and 1150oC. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were applied to characterize the phases and microstructure of the varistor ceramics. A DC parameter instrument for varistor ceramics was applied to investigate the electronic properties and V-I characteristics. The results showed that there were no changes in crystal structure with Sc2O3-doped varistor ceramics and that the average size of ZnO grain increased first and then decreased. The best electronic characteristics of the varistor ceramics prepared by high-energy ball milling were found in 0.3 mol.% Sc2O3-doped ZnO-Bi2O3 -based ceramics sintered at 1000 oC, which exhibited a threshold voltage of 821 V/mm, nonlinear coefficient of 62.1 and leakage current of 0.16 μA.
CaCu3Ti4O12 ceramics doped with different contents of Sc203 (mol%, x = 0, 0.05, 0.10, 0.15, and 0.20) were prepared by the traditional solid-state reaction method. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used in the microstructural studies of the specimen, and the electrical properties were inves- tigated. XRD results show that the Sc has no influence on the phase composition. The results from the dielectric measurements show that further increase of Sc doping could decrease the dielectric loss slightly. A high dielectric constant and low dielectric loss can be achieved when the doping concentration is 0.10 mol%.