您的位置: 专家智库 > >

北京市自然科学基金(1122008)

作品数:6 被引量:9H指数:2
相关作者:周凤英李云章更多>>
相关机构:东华理工大学北京工业大学更多>>
发文基金:北京市自然科学基金国家自然科学基金北京市教育委员会科技发展计划面上项目更多>>
相关领域:理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 6篇理学

主题

  • 3篇FRAME
  • 2篇SUBSPA...
  • 2篇RATION...
  • 1篇注记
  • 1篇RESULT...
  • 1篇SUBSPA...
  • 1篇UAS
  • 1篇WEAK
  • 1篇AFFINE
  • 1篇APPLIC...
  • 1篇BI
  • 1篇DENSIT...
  • 1篇EXPANS...
  • 1篇FUNCTI...
  • 1篇FUNCTI...
  • 1篇GABOR
  • 1篇GMS
  • 1篇HE
  • 1篇IR
  • 1篇LIKE

机构

  • 1篇北京工业大学
  • 1篇东华理工大学

作者

  • 1篇李云章
  • 1篇周凤英

传媒

  • 3篇Scienc...
  • 1篇数学物理学报...
  • 1篇Acta M...
  • 1篇Acta M...

年份

  • 1篇2015
  • 1篇2014
  • 3篇2013
  • 1篇2012
6 条 记 录,以下是 1-6
排序方式:
Density Results for Subspace Multiwindow Gabor Systems in the Rational Case
2013年
Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).
Qiao Fang LIANHai Li MA
关键词:SUBSPACES
Generalized multiresolution structures in reducing subspaces of L^2(R^d)被引量:3
2013年
In this paper, we introduce the notion of generalized multiresolution structure (GMS) in the set-ting of reducing subspaces of L2(Rd). For a general expansive matrix, we obtain a necessary and sufficient condition for GMS, and prove the existence of GMS in a reducing subspace. Using GMS, we obtain a pyramid decomposition and a frame-like expansion for signals in reducing subspaces.
ZHOU FengYingLI YunZhang
Supports of Fourier Transforms of Refinable Frame Functions and Their Applications to FMRA
2012年
Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functions. As applications, we derive the characterization of bounded measurable sets as the supports of Fourier transforms of FMRA (W-type FMRA) frame scaling functions and MRA (W-type MRA) scaling functions for FL2(Ω), respectively. Some examples are also provided.
Yun-zhang LIChun-hua HAN
Weak(quasi-)affine bi-frames for reducing subspaces of L^2(R^d)被引量:8
2015年
Since a frame for a Hilbert space must be a Bessel sequence, many results on(quasi-)affine bi-frame are established under the premise that the corresponding(quasi-)affine systems are Bessel sequences. However,it is very technical to construct a(quasi-)affine Bessel sequence. Motivated by this observation, in this paper we introduce the notion of weak(quasi-)affine bi-frame(W(Q)ABF) in a general reducing subspace for which the Bessel sequence hypothesis is not needed. We obtain a characterization of WABF, and prove the equivalence between WABF and WQABF under a mild condition. This characterization is used to recover some related known results in the literature.
JIA HuiFangLI YunZhang
关键词:FRAME
Rational time-frequency multi-window subspace Gabor frames and their Gabor duals被引量:1
2014年
This paper addresses the theory of multi-window subspace Gabor frame with rational time-frequency parameter products.With the help of a suitable Zak transform matrix,we characterize multi-window subspace Gabor frames,Riesz bases,orthonormal bases and the uniqueness of Gabor duals of type I and type II.Using these characterizations we obtain a class of multi-window subspace Gabor frames,Riesz bases,orthonormal bases,and at the same time we derive an explicit expression of their Gabor duals of type I and type II.As an application of the above results,we obtain characterizations of multi-window Gabor frames,Riesz bases and orthonormal bases for L2(R),and derive a parametric expression of Gabor duals for multi-window Gabor frames in L2(R).
ZHANG YanLI YunZhang
关于L^2(R^d)中仿射子空间小波标架的一个注记
2013年
研究了L^2(R^d)的有限生成仿射子空间中小波标架的构造.证明了任意有限生成仿射子空间都容许一个具有有限多个生成元的Parseval小波标架,并且得到了仿射子空间是约化子空间的一个充分条件.对其傅里叶变换是一个特征函数的单个函数生成的仿射子空间,得到了与小波标架构造相关的投影算子在傅里叶域上的明确表达式,同时也给出了一些例子.
周凤英李云章
共1页<1>
聚类工具0