The analysis on the chaotic dynamics of a six-dimensional nonlinear system which represents the averaged equation of a composite laminated piezoelectric rectangular plate is given for the first time. The theory of normal form and the energy-phase method are combined to investigate the higher-dimen-sional chaotic dynamics of the composite laminated piezoelectric rectangular plate. Firstly,the theory of normal form is used to reduce the six-dimensional averaged equation to the simpler normal form. Then,the energy-phase method is extended to analyze the global bifurcations and chaotic dynamics of a six-dimensional nonlinear system. The analysis results indicate that there exist the homoclinic bi-furcation and Shilnikov type multi-pulse chaos for the composite laminated piezoelectric rectangular plate. Finally,numerical simulations are also used to investigate the nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate. The results of numerical simulations also demonstrate that there exist the chaotic motions and the multi-pulse jumping orbits of the composite laminated piezoelectric rectangular plate.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy's third-order shear deformation plate theory and the model of the yon Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton's principle. Then, using the second-order Galerkin dis- cretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.
An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.
GUO Xiang Ying,ZHANG Wei & YAO MingHui College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China
The bifurcations and chaotic dynamics of a simply supported symmetric cross-ply composite lami- nated piezoelectric rectangular plate are studied for the first time, which are simultaneously forced by the transverse, in-plane excitations and the excitation loaded by piezoelectric layers. Based on the Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the composite laminated piezoelectric rectangular plate are derived by using the Hamilton’s principle. The Galerkin’s approach is used to discretize partial differential governing equations to a two-degree- of-freedom nonlinear system under combined the parametric and external excitations. The method of multiple scales is employed to obtain the four-dimensional averaged equation. Numerical method is utilized to find the periodic and chaotic responses of the composite laminated piezoelectric rectangular plate. The numerical results indicate the existence of the periodic and chaotic responses in the aver- aged equation. The influence of the transverse, in-plane and piezoelectric excitations on the bifurca- tions and chaotic behaviors of the composite laminated piezoelectric rectangular plate is investigated numerically.
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.