Compositing gold nanoparticles into conjugated molecules have been developed to be one of the most important approaches to increase stability, since degradation of conjugated materials is now one of the biggest bottle-necks to be conquered before industrialization application. Big-size colloidal gold nanoparticles with strong surface plasma resonance are designed to composite with conjugated molecules, in order to realize effective fluorescence enhancement and stabilization. The uniform composition film of hydrophilic colloidal gold nanoparticles (particle diameter of 30 nm) and hydrophobic carbazole functionalized fluorene trimers has been obtained by direct mixing of their aqueous and THF solutions, which is determined by AFM. By the comparison of composition based on fluorene trimers with similar structures, we have found that peripheral carbazole group and molecular size of fluorene trimers play an important role in the balance of incompatible solubility, which is regarded as increasing solubility of fluorene trimers in mixed solvent, connecting AuNP and peripheral carbazole groups, and restraining aggregate of gold nanoparticle. This allows facile hydrophilic gold nanoparticle to disperse uniformly in hydrophobic-conjugated host. Our investigations show that fluorescence intensity of composition film is enhanced by 4 folds, and heat treatment (200°C for 4h) for the composition film does not induce the degradation of conjugated backbone without the appearance of low-energy emission band, demonstrating the prominent potency of gold nanoparticles in enhanced fluorescence and stability of conjugated molecules and polymers.