Possessing multiple stellar populations has been accepted as a common feature of globular clusters(GCs). Different stellar populations manifest themselves with different chemical features,e.g. the well-known O-Na anti-correlation. Generally, the first(primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second(polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods,which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.
We report the discovery of an extremely metal-poor(EMP) giant,LAMOST J110901.22+075441.8, which exhibits a large excess of r-process elements with [Eu/Fe] ~ +1.16. The star is one of the newly discovered EMP stars identified from the LAMOST low-resolution spectroscopic survey and a highresolution follow-up observation with the Subaru Telescope. Stellar parameters and elemental abundances have been determined from the Subaru spectrum. Accurate abundances for a total of 23 elements including 11 neutron-capture elements from Sr through Dy have been derived for LAMOST J110901.22+075441.8. The abundance pattern of LAMOST J110901.22+075441.8 in the range of C through Zn is in line with the "normal" population of EMP halo stars, except that it shows a notable underabundance in carbon. The heavy element abundance pattern of LAMOST J110901.22+075441.8 is in agreement with other well studied cool r-II metal-poor giants such as CS 22892-052 and CS 31082-001. The abundances of elements in the range from Ba through Dy match the scaled solar r-process pattern well.LAMOST J110901.22+075441.8 provides the first detailed measurements of neutroncapture elements among r-II stars at such low metallicity with [Fe/H]-3.4, and exhibits similar behavior as other r-II stars in the abundance ratio of Zr/Eu as well as Sr/Eu and Ba/Eu.
Hai-Ning LiWako AokiSatoshi HondaGang ZhaoNorbert ChristliebTakuma Suda
Most Galactic metal-poor stars exhibit enhanced α-abundances(e.g.[Mg/Fe] ~ +0.4) according to previous studies of stellar chemical compositions.However, a handful of metal-poor stars with large deficiencies in Mg(e.g. [Mg/Fe]~-0.2) show severe departures from this α-enhancement trend. The sub-solar[Mg/Fe] ratios of these anomalous stars indicate that they possess different chemical enrichment histories than the majority of Galactic metal-poor stars. In previous work,we presented a method to select Mg-poor metal-poor stars from low-resolution SDSS spectra based on a spectral matching technique. In this paper, a similar method is applied to low-resolution(R ~ 1800) LAMOST spectra. Stellar [Mg/Fe] abundances are determined by using stellar parameters delivered by the LAMOST Data Release2 catalog. From a sample of ~ 60 000 stars with atmospheric parameters in the range Teff = [5500, 6500] K and [Fe/H] = [-2.4, +0.5], we select 15 candidate Mg-poor metal-poor stars.
We present chromospheric activity index SHK measurements for 119 995 F, G and K stars with high signal-to-noise ratio(S/N 〉 80) spectra, extracted from LAMOST DR1 in SDSS g band. The index δS for each of these stars is calculated by the difference between its SHK value and the baseline determined from very inactive stars. The effect of metallicity on measurement of δS varies with stellar Teff. No evident Vaughan-Preston gap appears in our sample. The relation between δS and vertical distance from the Galactic plane is determined for stars with Teff 〈 5500 K. Stars with higher δS tend to be closer to the Galactic plane. Two open clusters in the DR1 sample, M45 and M67, exhibit the expected general trend that δS decays with age.For stars with Teff 〉 5500 K, similar δS levels appear in both young and old cluster stars, which supports Pace's suggestion that caution should be exercised when deriving the age of a single star by using its chromospheric activity. Finally, we investigate the relation between δS and the kinematics of our sample.
We have cross-matched the LAMOST DR2 with the WISE, 2MASS and PPMXL catalogs and obtained a sample of 64 819 FGK metal-poor dwarfs with [Fe/H]〈-0.7, distances within 2 kpc from the Sun and reliable kinematics(space velocities,angular momenta and eccentricities). With a detection strategy for halo streams provided by Klement et al, nine significant "phase-space overdensities" with stars on very similar orbits are identified from this sample. Among these overdensities, three were previously known and six are new stream candidates. The kinematics and metallicities of these stream candidates are then analyzed; they have typical halo characteristics.We have extracted the most probable members of each halo stream according to their angles with respect to the North Galactic Pole and investigate the distribution of the angular momenta to further verify their existences. Detailed study of elemental abundances for these members based on high resolution and high signal-to-noise spectra from follow-up observations in the near future is of high interest to understand the origin of these streams.
A sample of 70 E+A galaxies is selected from 37 206 galaxies in the second data release of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST). This sample is selected according to the criteria for E+A galaxies defined by Goto, and each of these objects is further visually identified. In this sample, most objects are low redshift E+A galaxies with z 〈 0.25, and are located in an area of the sky with high Galactic latitude and magnitude from 14 to 18 mag in the g, r and i bands. A stellar population analysis of the whole sample indicates that the E+A galaxies are characterized by both young and old stellar populations(SPs), and the metalrich SPs have relatively higher contributions than the metal-poor ones. Additionally, a morphological classification of these objects is performed based on images taken from the Sloan Digital Sky Survey.
Carbon stars are excellent kinematic tracers of galaxies and can serve as a viable standard candle, so it is worthwhile to automatically search for them in a large amount of spectra. In this paper, we apply the efficient manifold ranking algorithm to search for carbon stars from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) pilot survey, whose performance and robustness are verified comprehensively with four test experiments. Using this algorithm, we find a total of 183 carbon stars, and 158 of them are new findings. According to different spectral features, our carbon stars are classified as 58 C-H stars, 11 C-H star candidates, 56 C-R stars, ten C-R star candidates, 30 C-N stars, three C-N star candidates, and four C-J stars. There are also ten objects which have no spectral type because of low spec- tral quality, and a composite spectrum consisting of a white dwarf and a carbon star. Applying the support vector machine algorithm, we obtain the linear optimum clas- sification plane in the J - H versus/-/- Ks color diagram which can be used to distinguish C-H from C-N stars with their J - H and H - Ks colors. In addition, we identify 18 dwarf carbon stars with their relatively high proper motions, and find three carbon stars with FUV detections likely have optical invisible companions by cross matching with data from the Galaxy Evolution Explorer. In the end, we detect four variable carbon stars with the Northern Sky Variability Survey, the Catalina Sky Survey and the LINEAR variability databases. According to their periods and ampli- tudes derived by fitting light curves with a sinusoidal function, three of them are likely semiregular variable stars and one is likely a Mira variable star.
The core-degenerate (CD) scenario has been suggested to be a possible progenitor model of type Ia supernovae (SNe Ia), in which a carbon-oxygen white dwarf merges with the hot CO core of a massive asymptotic giant branch star dur- ing their common-envelope phase. However, the SN Ia birthrates for this scenario are still uncertain. We conducted a detailed investigation into the CD scenario and then gave the birthrates for this scenario using a detailed Monte Carlo binary pop- ulation synthesis approach. We found that the delay times of SNe Ia from this sce- nario are -70 Myr- 1400 Myr, which means that the CD scenario contributes to young SN Ia populations. The Galactic SN Ia birthrates for this scenario are in the range of ~7.4×10^-5 yr^-1- 3.7 × 10^-4 yr^-1, which roughly accounts for -2%-10% of all SNe Ia. This indicates that, under the assumptions made here, the CD scenario only contributes a small portion of all SNe Ia, which is not consistent with the results of Ilkov & Soker.
We identify 108 M subdwarfs(sd Ms) out of more than two hundred thousand M type spectra from the second data release(DR2) of the LAMOST regular survey. This sample, among which 58 members are identified for the first time, includes 33 extreme subdwarfs(esd Ms) and 11 ultra subdwarfs(usd Ms).The selection is based on the usual ratio of absorption depth of Ca H2, Ca H3 and TiO 5 band systems.We also emphasize the use of the Ca H1 band. We provide estimates of spectral subtype(SPT), L′epine metallicity index ζ, effective temperature and [Fe/H]. Both ζ–[Fe/H] and SPT–Teff figures show reasonable consistency; compared to PHOENIX model spectra, average rounded values of [Fe/H] for sd Ms, esd Ms and usd Ms are respectively –0.5, –1 and –1.5. The photometric distances are estimated, indicating that most sources are located within 500 pc of the Sun and 350 pc of the Galactic disk. Velocities and 3D Galactic motions are also briefly discussed. Among the 108 subdwarfs, seven stars appear to be active with a significant Hα emission line. The source LAMOST J104521.52+482823.3 is a white dwarf- M subdwarf binary, while LAMOST J123045.52+410943.8, also active, exhibits carbon features in red.
The post-AGB star J004441 is the first and the only one CEMP-r/s star found in SMC. Herein, we investigate the observed abun- dance pattern of the heavy elements using our parametric model. A consistent fitting results was obtained for the sample star. Based on the low r = 0.08, the s-process nucleosynthesis occurred in the interior is supposed to belong to the single neutron-exposure v9 ,1/2 mbarn-1 supports a higher efficiency of the s-process nucleosynthesis relative to event. The median value of τ0 =0.44(T9/0.348)mbarn-1 supports a higher efficiency of the s-process nucleosynthesis relative to J004441 than that of the solar system, however, the value is not sufficiently high to favor the formation of a lead star. Thus, J004441 does not belong to lead star group. The large Cs value of J004441 supports the intrinsic characteristic of the s-enrichment. The Cr value is similar with that found in halo CEMP-r/s stars, which indicates that the r-process contributions is critical during heavy element enrichment. This star has a metallicity of [Fe/H] = -1.34, which is larger than that of Galaxy halo CEMP-r/s stars. The reason may be because of the different history of metallicity enrichment between the SMC and the Galaxy halo.