考虑到工业过程中不同数据结构特征的提取方式可能会影响质量监控性能,提出了一种融合过程数据集全局与局部结构特征的集成质量监控(Ensemble Learning based Multiple Data Structures Quality Monitoring,E-MDSQM)方法。首先,构建偏最小二乘(Partial Least Square,PLS)、邻域保持回归(Neighborhood Preserving Regression,NPR)、局部全局主成分回归(Local and Global Principal Component Regression,LGPCR)3种基础模型,分别描述过程数据的全局结构、局部拓扑及局部全局混合结构信息;然后,基于一种新的监控指标,采用遗传优化算法求得最优权重,集成融合各统计量并确定控制限;最后,通过田纳西-伊斯曼(Tennessee-Eastman Process,TE)过程仿真,评估集成模型的监控效果,并与PLS、NPR、LGPCR 3种基础算法比较,实验结果表明该集成模型取得了较好的综合效果。
现代工业过程往往具有多个运行模态,并且单一模态中的变量服从高斯与非高斯混合的复杂数据分布。针对多模态与复杂数据分布问题,基于局部离群概率(local outlier probability,LOOP)算法与支持向量数据描述(support vector data description,SVDD)算法,提出了一种名为MSVDD(multiple support vector data description,MSVDD)的多模态过程监控方法。首先,考虑到不同模态之间存在差异,利用差分策略以及局部离群概率算法对多模态数据进行聚类。其次,在每个单一模态下分别建立SVDD模型。然后,通过计算测试样本对每个单一模态的离群概率选择合适的模型进行过程监控。最后,在Tennessee Eastman(TE)平台上进行仿真测试以验证提出方法的可行性与有效性。