We investigate the application of the Mei symmetry analysis in finding conserved quantities for the thin elastic rod statics. By using the Mei symmetry analysis, we have obtained the Jacobi integral and the cyclic integrals for a thin elastic rod with intrinsic twisting for both the cases of circular and non-circular cross sections. Our results can be easily reduced to the results without the intrinsic twisting that have been reported. Through calculation, we find that the Noether symmetry can be more directly and easily used than the Mei symmetry in finding the first integrals for the thin elastic rod. These first integrals will be helpful in the study of exact solutions and stability, as well as the numerical simulation of the elastic rod model for DNA.