Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different reaction products is presented.We report a complete exploration of the potential energy surfaces by taking into consideration different spin states.In addition,the intermediate and transition states along the reaction paths are characterized.Total,partial,and overlap population density of state diagrams and analyses are also presented.Furthermore,the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function(ELF) and Mayer bond order.Infrared spectrum(IR) is obtained and further discussed based on the optimized geometries.
The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.