您的位置: 专家智库 > >

国家自然科学基金(61074061)

作品数:8 被引量:26H指数:3
相关作者:李少远李柠华晨张光明陈朦更多>>
相关机构:上海交通大学更多>>
发文基金:国家自然科学基金国家高技术研究发展计划上海市基础研究重大(重点)项目更多>>
相关领域:自动化与计算机技术电气工程航空宇航科学技术化学工程更多>>

文献类型

  • 8篇期刊文章
  • 3篇会议论文

领域

  • 9篇自动化与计算...
  • 1篇化学工程
  • 1篇电气工程
  • 1篇航空宇航科学...

主题

  • 2篇预测控制
  • 2篇数据驱动
  • 2篇SPACE
  • 2篇TIME
  • 2篇MPC
  • 2篇测控
  • 2篇DATA-D...
  • 1篇导航方法
  • 1篇星座
  • 1篇子空间
  • 1篇自适
  • 1篇自适应
  • 1篇自主导航
  • 1篇自主导航方法
  • 1篇最小二乘
  • 1篇最小二乘辨识
  • 1篇可见性
  • 1篇广义预测控制
  • 1篇航天
  • 1篇航天器

机构

  • 4篇上海交通大学

作者

  • 4篇李少远
  • 3篇李柠
  • 1篇杨文博
  • 1篇张光明
  • 1篇陈朦
  • 1篇华晨

传媒

  • 1篇自动化学报
  • 1篇上海交通大学...
  • 1篇控制理论与应...
  • 1篇中国惯性技术...
  • 1篇Chines...
  • 1篇Contro...
  • 1篇Intern...
  • 1篇智能系统学报

年份

  • 2篇2013
  • 3篇2012
  • 6篇2011
8 条 记 录,以下是 1-10
排序方式:
基于多星座信息的高轨航天器自适应自主导航方法被引量:1
2013年
采用四类星座系统确定高轨航天器的轨道,以解决目前应用单模或双模定位系统导航时可见性、可靠性和可用性低的问题。分析了星座卫星的可见性与兼容性,并基于加权几何精度因子(Weighted Geometric Dilution of Precision,WGDOP)实现选星。采用星座/惯性紧组合的方式,针对各星座系统存在时间同步差异的问题,将各个星座系统的时钟同步误差作为导航系统的状态变量进行实时估计,实现软同步;针对高轨航天器接收到的导航卫星信号微弱、量测噪声的不确定性大的问题,对滤波器中的量测噪声方差阵进行在线自适应调整。数学仿真表明,在系统的量测噪声具有较大的不确定性,不能准确建立量测误差模型时,采用改进的自适应滤波算法,与扩展卡尔曼滤波(Extended Kalman Filter,EKF)相比,导航精度可提高一倍。
杨文博李少远
关键词:自主导航可见性
Stabilized Neighborhood Optimization based Distributed Model Predictive Control for Distributed System
<正>A class of large scale systems,which is naturally divided into many small interacting subsystems with const...
ZHENG Yi~(1
文献传递
A Real-time Modeling of Photovoltaic Array被引量:3
2012年
This paper mainly aims at the modeling problem of the photovoltaic (PV) array with a 30 kW PV grid-connected generation system. An iterative method for the time-varying parameters is proposed to model a plant of PV array. The relationship of PV cell and PV array is obtained and the solution for PV array model is unique. The PV grid-connected generation system is used to demonstrate the effectiveness of the proposed method by comparing the calculated values with the actual output of the system.
王魏李柠李少远
关键词:MODELING
分布参数系统的时空ARX建模及预测控制被引量:9
2011年
本文针对一类可由抛物型偏微分方程描述的分布参数系统,研究了一种基于输入输出数据的建模与控制方法.首先利用Karhunen-Loève(K-L)分解提取系统的一组主导空间基函数,并以此对系统输出进行时空分解,随后由时空分解得到的时间系数部分以及系统激励构成输入输出信息,利用最小二乘法辨识出时域ARX模型,最后针对该模型设计了广义预测控制器.仿真结果表明,上述控制方法能够对分布参数系统取得良好的控制效果.
华晨李柠李少远
关键词:分布参数系统ARX模型广义预测控制最小二乘辨识
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark被引量:3
2013年
王陆李柠李少远
关键词:数据驱动子空间
室内舒适性指标PMV的区间Ⅱ型T-S模糊建模被引量:1
2011年
预测平均投票值(PMV)是室内热环境的标准化指标,其涉及的数学模型复杂且存在不确定性,不能适应实时控制的需要.同时,传统的采用一个PMV值评价热环境的方法具有局限性,不能反映不同位置人体舒适感的差异.为了处理测量噪声和人体因素带来的不确定性,通过对室内气流和传热计算流体动力学(CFD)模拟数值以准确描述PMV值,建立了PMV的区间II型T-S模糊模型.针对二阶模糊隶属度的确定问题,在G-K聚类的基础上,采用遗传算法对二阶隶属度函数的参数进行优选,再由最小二乘法辨识得到后件参数.仿真结果表明II型T-S模糊模型比I型更有效地减少了不确定性,对模型精度的影响,对动态过程和稳态数值都有很好的预测能力.
陈朦李柠李少远
关键词:PMVCFD
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models被引量:3
2011年
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
Meng-Ling WangNing LiShao-Yuan Li
Online correction MPC strategy for spatially-distributed system based on PCA method
2012年
In this paper, the online correction model predictive control (MPC) strategy is presented for partial dif- ferential equation (PDE) unknown spatially-distributed systems (SDSs). The low-dimensional MIMO models are obtained using principal component analysis (PCA) method from the high-dimensional spatio-temporal data. Though the linear low- dimensional model is easy for control design, it is a linear approximation for nonlinear SDSs. Thus, the MPC strategy is proposed based on the online correction low-dimensional models, where the state at a previous time is used to correct the output of low-dimensional models and the spatial output is correct by the average deviation of the historical data. The simulations demonstrated show the accuracy and efficiency of the proposed methodologies.
Mengling WANGNing LIShaoyuan LI
A Modified Multivariate EWMA Control Chart for Monitoring Process Small Shifts
In this paper,a novel data-driven approach is presented to monitor processes influenced by gradual small shift...
Guangming Zhang
关键词:RED
Data-driven Process Monitoring Method Based on Dynamic Component Analysis
<正>A novel data-driven process monitoring method based on dynamic independent component analysis-principle com...
ZHANG Guangming,LI Ning,LI Shaoyuan Department of Automation,Shanghai Jiao Tong University,and Key Laboratory of System Control and Information Processing,Ministry of Education of China,Shanghai 200240,P.R.China
关键词:DATA-DRIVENSVDDBOOTSTRAP
文献传递
共2页<12>
聚类工具0