针对传统的到达时差(Time difference of arrival,TDOA)多目标跟踪算法计算量大,估计精度低,虚警值较多等问题,提出了一种预关联高斯混合概率假设密度(P-GMPHD)多目标跟踪算法。该算法利用随机集理论对TDOA的目标状态和观测值进行建模,通过递推高斯混合来预测和更新各状态后验概率密度,避免了复杂的数据关联问题。为减轻高斯混合滤波的计算量,提出了将预测信息与观测值进行预关联的思想,剔除虚警值,从而显著地降低了计算量。仿真结果表明,该算法能在杂波环境下有效地利用TDOA测量值跟踪未知数目的多个运动目标,并且在不影响跟踪性能的情形下,其计算量比一般GMPHD有了较大的降低。
针对源信号个数未知的欠定混合盲源分离问题,本文提出了一种基于特征矩阵联合近似对角化(Joint Approximate Diagonalization of Eigenmatrices,JADE)和平行因子分解的欠定混合盲辨识算法,该算法不需要源信号满足稀疏性要求,仅在源信号满足相互独立和最多一个高斯信号的条件下,通过将JADE算法中的样本四阶协方差矩阵叠加成三阶张量,再对此三阶张量进行平行因子分解来完成源信号数和混合矩阵的估计,由于平行因子分解的唯一辨识性在欠定条件下仍然满足,该算法能够解决欠定盲源分离问题。并对该欠定混合盲辨识算法进行了深入的分析。通过仿真实验,计算估计矩阵与混合矩阵的平均相关误差,结果表明本文提出的算法在适定和欠定混合时均具有很好的辨识效果,而且实现简单,可满足实际应用的要求。