With mean yield(MY)criterion,an analytical solution of the collapse load for a defect-free pipe elbow under internal pressure is first obtained.It is a function of ratio of thickness to radius t0/r0,strain hardening exponent n,curvature influence factor mand ultimate tensile strength.The collapse load increases with the increase of m,and it is the same as the burst pressure of straight pipe if m=1is assumed.The MY-based solution is compared with those based on Tresca,Mises and twin shear stress(TSS)yield criteria,and the comparison indicates that Tresca and twin shear stress yield criteria predict a lower bound and an upper bound to the collapse load respectively.However,the MY-based solution lies just between the TSS and Tresca solutions,and almost has the same precision with the Mises solution.
The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.
In this study,two API X80 pipeline steels were fabricated by varying Ti additions,and their microstructures and fracture characteristics were analyzed to investigate the effects of Ti-enriched carbonitride on the tensile properties and Charpy impact properties.Lathy bainite,a mass of matensite/austenite(M/A),coarse cubic Ti-enriched inclusions,chain-typed Ti-enriched precipitations,weak toughness and high tensile strength were found as consequences of higher amount of Ti content.Those large scale and chain-typed Ti-enriched carbonitrides are one kind of crack sources during fracture.The negative effect of higher amount of Ti on the impact properties is increased with decreased temperature.
Wei Deng,Xiuhua Gao,Dewen Zhao,Linxiu Du,Di Wu and Guodong Wang State key laboratory of rolling and automation,Northeastern University,Shenyang 110819,China
Microstructural characteristics of different sub-regions of heat affected zone (HAZ) of low welding crack susceptibility steel weldment were investigated by using optical microscopy and scanning electron microscopy equipped with electron backscattered diffraction system. And the focus was put on the correlation between microstructural characteristics and HAZ toughness of the weldment. The results reveal that the toughness of fusion line zone (FLZ) specimens is much lower than that of fine grained HAZ (FGHAZ) specimens. The coarse inclusions in the weld metal and the large martensite-austenite constituents in the coarse grained HAZ (CGHAZ) have an obvious negative effect on the crack initiation energy of FLZ. Meanwhile, the coarse granular bainite with large effective grain decreases the crack propagation energy seriously. By contrast, fine crystallographic grains in the FGHAZ play a key role in increasing toughness, especially in improving crack propagation energy.
Chunlin QIULiangyun LANDewen ZHAOXiuhua GAOLinxiu DU
In order to overcome the nonlinearity of Mises criterion, a new linear yield criterion with a dodecagon shape of the same perimeter as Mises criterion was derived by means of geometrical analysis. Its specific plastic work rate expressed as a linear function of the yield stress, the maximum and minimum strains was also deduced and compared with that of Mises criterion. The physical meaning of the proposed yield criterion is that yielding of materials begins when the shear yield stress τs reaches the magnitude of 0.594σs. By introducing the Lode parameter, validation of evolution expressions of the proposed yield criterion with those based on Tresca, Mises and TSS criteria as well as available classical yield experimental results of various metals shows that the present results intersect with Mises results and coincide well with experimental data. Moreover, further application to the limit analysis of circle plate as an example is performed to demonstrate the effectiveness of the proposed yield criterion, and the subsequent comparison of limit loads with the Tresca analytical solutions and Mises numerical results shows that the present results are higher than the Tresca analytical results, and are in good agreement with the Mises numerical results.