To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.
For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.
Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology.