The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction.
Pre-compression and heat treatment were performed on an extruded AZ31 Mg alloy,and their effects on subsequent deformation behavior were investigated.The results show that at low temperature annealing(170 ℃ for 4 h),the extruded samples with and without annealing exhibit a nearly equivalent yield stress(~148 MPa) because their microstructures are nearly unchanged.However,under the same annealing condition,the yield stress of sample with pre-twinning and subsequent annealing(~225 MPa) is higher than that of the pre-twinned one(~200 MPa).The former sample presents a hardening effect because the solute atoms segregated on twin boundaries lead to a strengthening effect.The pre-twinned sample annealed at 400 ℃ for 1 h shows a higher ultimate elongation(~28%) than the pre-twinned one(~15%),but its yield stress(~125 MPa) is much lower than that of the pre-twinned one(~200 MPa).