Though light conditions are known to affect the development and anti-predation strategies of several aquatic species, relatively little is known about how different species react to light, or how light can affect these species during different points in their life-cycle. In this study, we used four sympatric anuran tadpoles (Bufo gargarizans, B. melanostictus, Pelophylax nigromaculatus and Microhyla fissipes) as animal system to examine species-specific activities of the underdoing different light intensity treatments, so as to better understand how they respond to light. We exposed four different species of tadpoles to 1660 and 14 lux light intensity treatments and then measured several parameters including development stage, body length and tail length, and as well as their basic activities. The results of this observation and analysis showed that the activities of tadpoles were significantly greater in B. gargarizans and B. melanostictus than in P. nigromaculatus and M. fissipes; and were also significantly greater during times of high light intensity as compared to during low light intensity. Moreover, the observed relationship between species and light intensity was significant. The activities ofB. gargarizans and B. melanostictus tadpoles were greater in high light, while the activity of P. nigromaculatus tadpoles was greater in low light intensity, while M. fissipes tadpoles showed no differences in either low or high intensity light. Furthermore, the activities orB. gargarizans, B. melanostictus and M. fissipes tadpoles in terms of developmental stage, body size or tail length did not seem to differ with light intensity, but during early larval developmental period of P. nigromaculatus, the activity of tadpoles was negatively correlated with development stage, but irrelevant to either body size or tail length in different light intensities. These results lead us to conclude the observed activities of the four sympatric anuran tadpoles are closely correlated with their specific anti-predation strategie
While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship by studying the responses of tiger frog (Hoplobatrachus chinensis) tadpoles to simulated hydroperiods (i.e., constant low water levels, constant high water levels, increasing water levels, decreasing water levels, rapid changes in water levels and gradual fluctuations in water levels) in a laboratory setting. ANOVA analysis showed that none of the water level treatments had any significant effect on the total length, body mass, or developmental stages of H. chinensis tadpoles half way through development (11 days old). Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis, whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis. None of the water level treatments had a significant effect on the snout-vent length (SVL) or body mass of H. chinensis tadpoles at Gosner stage 42, or on the body mass of tadpoles at Gosner stage 45. However, the' tadpoles raised in high levels and rapidly fluctuating water levels, significantly larger SVL at Gosner stage 45, while ones under gradually fluctuating water levels had smaller SVL than the other groups. Time to metamorphosis was positively correlated with body size (SVL) at metamorphosis in H. chinensis tadpoles. H. chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments (G-test). Moreover, ANOVA and ACNOVA (with body length as the covariate) indicated that water levels had no significant effect on either the morphology (i.e. head length, head width, forelimb length, hindlimb length and body width) or the jumping ability of juvenile H. chinensis. These results suggest that the observed accelerated metamorphosis and high mortality of H. chinensis tadpoles under decreasing water level treatment was driven by dens
Kinship and density are believed to affect important ecological processes such as intraspecific competition, predation, growth, development, cannibalism, habitat selection and mate choice, In this work, we used Chinese tiger frog Hoplobatrachus chinensis tadpoles as an experimental model to investigate the effects of kinship and density on growth and development of this species over a 73 day period. The results showed that density can affect the growth and developmental traits (survival rate, larval period, size at the limb bud protrusion/metamorphic climax and body mass at different life stages) of H. chinensis tadpoles, while kinship does not. Tadpoles took longer to develop and potential metamorphosis was greater in high density groups of both sibling and non-siblings. The interaction of kinship and density did not significantly influenced growth traits of H. chinensis tadpoles during the experimental period. For coefficient variations of each growth trait, no differences were detected between sibling and non-sibling groups. These findings provide valuable information on the basic ecology of H. chinensis which will be helpful in future studies of other anuran species.
Alien species are one of the most serious threats to the decline and extinction of native amphibian populations. In this study, we examined the predation of invasive Western Mosquitofish Gambusia affinis on the eggs, embryos, and tadpoles of Duttaphrynus melanostictus and Pelophylax nigromaculatus in south China. Our results suggested that the survival of eggs and embryos remaining in the egg capsules of P. nigromaculatus and D. melanostictus was significantly higher than those removed from the egg capsule at 12-h intervals within 72 h in the presence of G. affinis. The survival of P. nigromaculatus eggs and embryos without egg capsules was significantly lower than those of D. melanostictus without egg capsules. The survival of P. nigromaculatus eggs and embryos with egg capsules was significantly higher than those of D. melanostictus with egg capsules from 24 h to 72 h except for 12 h. The survival of D. melanostictus tadpoles was significantly higher than that of P. nigromaculatus tadpoles in the presence of G. affinis. The survival of Gosner stage 26 tadpoles of P. nigromaculatus was significantly higher than that of Gosner stage 30 tadpoles from 12 h to 60 h, but there were no significant differences at 72 h. In contrast, the survival of Gosner stage 26 tadpoles of D. melanostictus was significantly lower than that of Gosner stage 30 tadpoles within 72 h, recording every 12 h. The increasing temperature caused a significant increase in predation by G. affinis on P. nigromaculatus eggs and embryos. The outer jelly capsule surrounding anurans eggs might serve as a mechanical defense against predation by G. affinis due to its large diameter, relatively stationary state and unpalatability. The differences in the vulnerability of P. nigromaculatus and D. melanostictus embryos and tadpoles to G. affinis probably due to differences in the unpalatability, black skin and activity. Based on the magnitude of predation by G. affinis on the eggs, embryos and tadpoles of these two species and the combined impact of tempera
Heavy metal pollution is widespread in some areas of China and results in contamination of land, water, and air with which all living organisms interact. In this study, we used three heavy metallic ions (Cu^2+, Pb^2+ and Zn^2+) to assess their toxicity effects on mortality, blood biomarker and growth traits (body length and body mass) of Rana zhenhaiensis tadpoles. The results showed that the toxicity levels of the three metallic ions were different when conducted with different experiment designs. For acute toxicity tests, Cu^2+ was the most toxic with the highest tadpole mortality. The mortalities of tadpoles showed significant differences among the treatments at the same exposure time endpoints (24, 48, 72 and 96h). Results from repeated measures ANOVA indicated that metallic ion concentration, exposure time and their interactions significantly affected the mortalities of R. zhenhaiensis tadpoles. Also, the toxicity effects of all binary combinations of the three metallic ion treatments showed synergism. The half lethal concentrations (LCs0) decreased with increasing exposure time during the experimental period, and the safe concentration (SC)values of Cu^2+, Pb^2+ and Zn^2+ were different from each other. Combined and compared LC50 values with previous data reported, it is suggestes that the toxicity levels of metal pollution to anuran tadpoles should be species-and age-related. For blood biomarker tests, Zn^2+ was the most toxic with the highest total frequencies of abnormal erythrocytic nucleus. All three metallic ions caused higher abnormal erythrocytic nucleus compared with control groups. In a chronic toxicity test, Pb^2+ was the most toxic with lowest growth traits. Survival rate (except for 18 days), total body length and body mass showed significant differences among the treatments. These findings indicated that tadpoles of R. zhenhaiensis should be as a bioindicator of heavy metals pollution.
Li WEIGuohua DINGSainan GUOMeiling TONGWenjun CHENJon FLANDERSWeiwei SHAOZhihua LIN
We studied acute and joint toxicity of three different agrochemicals (chlorantraniliprole, flubendiamide-abamectin and penoxsulam) to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles with the method of stability water tests. Results showed that the three agrochemicals increased tadpole mortality. For acute toxicity, the LC50 values after 24, 48 and 72 h of chlorantraniliprole, flubendiamide-abamectin and penoxsulam exposure were 5.37, 4.90 and 4.68 mg/L; 0.035, 0.025 and 0.021 rag/L; 1.74, 1.45 and 1.29 mg/L, respectively. The safety concentrations (SC) of chlorantraniliprole, fiubendiamide-abamectin and penoxsulam to the tadpoles were 1.23, 0.30 and 0.003 mg/L, respectively. Based on these findings, chlorantraniliprole and penoxsulam were moderately toxic, while flubendiamide-abamectin was highly toxic. All pairwise joint toxicity tests showed moderate toxicity. The LCs0 values after 24, 48 and 72 h of exposure were 7.08, 6.61 and 6.03 mg/L for chlorantra- niliprole+penoxsulam, with corresponding values of 2.455, 2.328 and 2.183 mg/L for chlorantraniliprole+flubendiamide-abamectin, and 1.132, 1.084 and 1.050 mg/L for penoxsulam+flubendiamide-abamectin, with safe concentrations of 1.73, 0.63 and 0.30 mg/L, respectively. For toxic evaluations of pairwise combinations of the three agrochemicals, only the joint toxicity of chlorantraniliprole and flubendiamide-abamectin after 24 h was found to be synergistic, whereas all other tests were antagonistic. Our findings provide valuable information on the toxic effects of agrochemicals on amphibians and how various types of agrochemicals can be reasonably used in agricultural areas.
Li WEIWei-Wei SHAOGuo-Hua DINGXiao-Li FANMiao-Ling YUZhi-Hua LIN