A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.