Reactive nitrogen oxygen species(RNOS) implicate damage in biological systems,especially leading to inflammation,neurodegenerative and cardiovascular diseases,and cancer by altering the functions of biomolecules through the N-nitrosation and N-nitration reactions.The mechanisms of N-nitrosation and N-nitration reactions of ammonia and dimethylamine by RNOS,i.e.,N2O3,N2O4,N2O5 and ONOOH,were investigated at the CBS-QB3 level of theory.The computational results indicate that the N-nitrosation reaction prefers a concerted mechanism,in which a H-abstraction and ON-addition occur simultaneously,whereas a stepwise mechanism(also called a free radical mechanism) is more favorable for most nitrating agents in the N-nitration reaction,where NO2 first abstracts a hydrogen atom from the nitrogen of amines and then the induced intermediate reacts with NO2 once more to form the nitration products.However,the concerted pathway is still a feasible process for some nitrating agents such as N2O5.In addition,the relationship between the structures of different RNOS and their nitrosating or nitrating abilities was also investigated.