A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loaded with lumped resistors, a dielectric substrate, and a metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz 18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
A low-frequency wideband, polarization-insensitive and wide-angle metamaterial absorber (MA) is designed, simulated and analyzed. This MA consists of a periodic arrangement of a cave-disk resonator (CDR), square resistive film (RF), and metal ground plane (GP) (a 0.8 mm-thick FR-4 dielectric spacer is sandwiched in between the CDR and RF, and another 1.2-mm thick FR-4 dielectric spacer is inserted in between the RF and GP). The simulated results based on finite integration technology (FIT) indicate that the absorption of the MA is greater than 90% and almost perfectly impedance- matched to the free space in the whole frequency range of 1 GHz–7 GHz. The simulated absorptions under the conditions of different polarization and incident angles indicate that this composite structure absorber is polarization-insensitive and wide-angled. Furthermore, the distribution of the power loss density indicates that the wideband absorptivity is mainly from the composite electromagnetic loss of the CDR and RF. This design provides an effective and feasible way to construct a low-frequency wideband absorber.