To simulate the concrete shrinkage in varying temperature and moisture environments, a simulate procedure comprising an analytical process and a finite element analysis is proposed based on the coupled partial differential equations describing heat and moisture transfer in a porous medium. Using the Laplace transformation method and transfer function to simplify and solve the coupled equations in Laplace domain, the moisture and temperature distribution in time domain are obtained by inverse Laplace transformation. The shrinkage deformations of concrete are numerically simulated by the finite element method (FEM) based on the obtained temperature and moisture distribution. This approach avoids the complex eigenvalues, coupling difficulty and low accuracy found in other solving methods, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar FEM software. The validity of the simulation procedure is verified by Hundt's test data. The results reveal that the proposed approach can be considered a reliable and efficient method to simulate the coupling moisture and temperature shrinkage of concrete.