您的位置: 专家智库 > >

上海市自然科学基金(11ZR1409600)

作品数:2 被引量:12H指数:2
相关作者:张静张静袁玉波陈志华胡微微更多>>
相关机构:华东理工大学南京大学更多>>
发文基金:上海市自然科学基金国家自然科学基金国家重点实验室开放基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇语义
  • 1篇语义分析
  • 1篇图像
  • 1篇图像标注
  • 1篇EXERCI...
  • 1篇ANIMAT...
  • 1篇EMERGE...

机构

  • 1篇南京大学
  • 1篇华东理工大学

作者

  • 1篇胡微微
  • 1篇陈志华
  • 1篇袁玉波
  • 1篇张静
  • 1篇张静

传媒

  • 1篇计算机辅助设...
  • 1篇Journa...

年份

  • 1篇2014
  • 1篇2013
2 条 记 录,以下是 1-2
排序方式:
A review of behavior mechanisms and crowd evacuation animation in emergency exercises被引量:2
2013年
Emergency exercises are an efficient approach for preventing serious damage and harm, including loss of life and property and a wide range of adverse social effects, during various public emergencies. Among various factors affecting the value of emergency exercises, including their design, development, conduct, evaluation, and improvement planning, this paper emphasizes the focal role of evacuees and their behavior. We address two concerns: What are the intrinsic reasons behind human behavior? How do we model and exhibit human behavior? We review studies investigating the mechanisms of psychological behavior and crowd evacuation animation. A comprehensive analysis of logical patterns of behavior and crowd evacuation is presented first. The interactive effects of information (objective and subjective), psychology (panic, small groups, and conflicting roles), and six kinds of behavior contribute to a more effective understanding of an emergency scene and assist in making scientific decisions. Based on these studies, a wide range of perspectives on crowd formation and evacuation animation models is summa- rized. Collision avoidance is underlined as a special topic. Finally, this paper highlights some of the technical challenges and key questions to be addressed by future developments in this rapidly developing field.
Gao-qi HEYu YANGZhi-hua CHENChun-hua GUZhi-geng PAN
多模型融合的多标签图像自动标注被引量:10
2014年
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果.
张静张静胡微微陈志华
关键词:图像标注
共1页<1>
聚类工具0