In this study, a nonlinear model is presented for analysis of damage-cracking behavior in arch dams during strong earthquakes using different seismic input mechanisms. The nonlinear system includes a plastic-damage model for cyclic loading of concrete considering strain softening and a contact boundary model of contraction joint opening. Two different earthquake input mechanisms are used for comparison, including massless foundation input model and viscous-spring boundary model considering radiation damping due to infinite canyon. The results demonstrate that effects of seismic input mechanism and radiation damping on nonlinear response and damage-cracking of the dam are significant. Compared with the results of using massless foundation input model, the damage-cracking region and contraction joint opening are substantially reduced when using viscous-spring boundary model to take into account radiation damping. However, if the damping ratio of the dam is artificially increased to about 10%–15% for massless foundation input model, the joint opening and damage-cracking of the dam are comparable to the results obtained from the viscous-spring boundary model.