A 980 nm bottom-emitting vertical-cavity surface-emitting laser linear array with high power density and a good beam property of Gaussian far-field distribution is reported. This array is composed of five linearly arranged elements with a 200 μm diameter one at the center, the other two 150μm and 100μm diameter ones at both sides of the center with center to center spacing of 300μm and 250μm, respectively. A power of 880 mW at a current of 4 A and a corresponding power density of up to 1 kW/cm^2 is obtained. The temperature dependent characteristics of the linear array are investigated. The thermal interaction between the individual elements of the VCSEL linear array is smaller due to its optimized element size and device spacing, which make it more suitable for high power applications. A peak power of over 20 W has been achieved in pulsed operation with a 60 ns pulse length and a repetition frequency of 1 kHz.
The whispering-gallery-mode (WGM) photonic crystal microcavity can be potentially used for miniaturized photonic devices, such as thresholdless lasers. In this paper, we use plane wave expansion (PWE) method and study the WGM of H2 photonic crystal microcavities which are formed by removing seven center air holes in a photonic crystal. The WGM in these large- size cavities has some advantages compared with single defect WGM in the view of real device applications. We analyze the nearby air hole effect on WGM and conclude that WGM is more sensitive to moving towards the outside rather than moving towards the inside of a nearby air hole. In our case, if a nearby air hole is moved 0. la away from the center, the WGM will disappear. If a nearby air hole is moved 0.6a towards the center, however, the WGM will still exit. We also analyze the structure with an air hole (rm= 0.2a) in the center of the microcavity, and we fred that the WGM is not affected by the central hole sensitively. As we increase rm, the WGM remains unchanged until rm is 0.64 times greater than period a. It is found that the tolerance of WGM to the displacement of nearby air holes and the occurance of central holes is large enough to fabricate electrical injection structure.
The influence of external optical feedback (OFB) on the light-current characteristics of the vertical-cavity surface-emitting lasers (VCSELs) was investigated theoretically and experimentally. By calculating the OFB sensitivity parameter, the OFB sensibility of the VCSELs was compared with the edge emitting lasers. Based on the compound cavity theory, the light-current characteristic parameters of the VCSELs with external OFB, such as the threshold current and the slope efficiency, were calculated. The experimental results indicated that the threshold current of the VCSELs with different DBR refleetivities decreased to different degrees, accompanied with a decrease of slope efficiency when under 10% feedback ratio of the external OFB, which is in good agreement with the theoretical calculation.