The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite element models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young's modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young's moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be acceptable to predict the Young's moduli of the grafted closed-cell PP foams with short-fiber reinforcement.
WANG Bo1, WANG RongXiu2 & WU Yong1 1 School of Mathematic Science, Chongqing Institute of Technology, Chongqing 400050, China