This paper is concerned with the existence, uniqueness, comparison and dynamics problem of a functional reaction-diffusion problem. The existence and uniqueness of the global C1,2 strong solution to the problem is derived using Schauder fixed point theorem in Banach space instead of the Ascoli-Arzela theorem in the unbounded region, meanwhile, the maximal and minimal solutions are also presented by the monotone iteration method with a pair of supper and lower solutions as the initial iteration.