Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite samples prepared from oxidation of Mn(OH)2 with 5%, 10%, and 20% Co/(Mn + Co) molar ratios (5Co-Na-bus, 10Co-Na-bus, and 20Co-Na-bus), were used to prepare todorokite, a common Mn oxide on the Earth's surface, using Mg2+/Co2+ ions as a template. The results showed that todorokites could be obtained by reflux treatment of Mg2+-exchanged non-doped Na-buserite and three Co-doped Na-buserites at atmospheric pressure. However, the formation of todorokites was prohibited by reflux treatment of Co2+-exchanged Na-bus, 5Co-Na-bus, and 10Co-Na-bus samples. Instead, todorokite was obtained by the reflux treatment of Co2+-exchanged 20Co-Na-bus samples under atmospheric pressure. X-ray photoelectron spectroscopy analysis showed that doped Co existed as Co3+ in the MnOs layers of doped Na-buserites. The amount of substituted Co3+ in the MnO6 layers may play a key role in the conversion of buserite to todorokite using Co2+ ions as a template.
Manganese oxides are known as one type of semiconductors,but their photocatalysis characteristics have not been deeply explored.In this study,photocatalytic degradation of phenol using several synthesized manganese oxides,i.e,acidic birnessite (BIR-H),alkaline birnessite (BIR-OH),cryptomelane (CRY) and todorokite (TOD),were comparatively investigated.To elucidate phenol degradation mechanisms,X-ray diffraction (XRD),ICP-AES (inductively coupled plasma-atomic emission spectroscopy),TEM (transmission electronic microscope),N 2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural,compositional,morphological,specific surface area and optical absorption properties of the manganese oxides.After 12 hr of UV-Vis irradiation,the total organic carbon (TOC) removal rate reached 62.1%,43.1%,25.4%,and 22.5% for cryptomelane,acidic birnessite,todorokite and alkaline birnessite,respectively.Compared to the reactions in the dark condition,UV- Vis exposure improved the TOC removal rates by 55.8%,31.9%,23.4% and 17.9%.This suggests a weak ability of manganese oxides to degrade phenol in the dark condition,while UV-Vis light irradiation could significantly enhance phenol degradation.The manganese minerals exhibited photocatalytic activities in the order of:CRY BIR-H TOD BIR-OH.There may be three possible mechanisms for photochemical degradation:(1) direct photolysis of phenol;(2) direct oxidation of phenol by manganese oxides;(3) photocatalytic oxidation of phenol by manganese oxides.Photocatalytic oxidation of phenol appeared to be the dominant mechanism.
Qin ZhangXiaodi ChengChen ZhengXionghan FengGuohong QiuWenfeng TanFan Liu