The antiwear and friction-reducing performances of sodium borate, potassium borate and lanthanum chloride in water were evaluated on a four-ball friction tester. The topographies, element distribution and chemical characteristics of the worn surfaces were investigated by scanning electron microscope (SEM), energy dispersion of X-ray (EDX) and X-ray photoelectron spectroscope (XPS). The results indicated that sodium borate, potassium borate and lanthanum chloride increased extreme pressure, antiwear and friction-reducing capacities of water to a certain extent, of which potassium borate was the best candidate. Combination of lanthanum chloride with sodium borate and po- tassium borate respectively further improved antiwear and friction-reducing capacities. Scratches of worn surfaces lubricated with water containing borates and lanthanum chloride were less severe than those lubricated with water containing borates alone. A tribochemical film mainly composed of oxides of lanthanum, boron and iron reduced friction and wear for water lubricant formulated with both borates and lanthanum chloride.