Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.
Let H be an infinite dimensional complex Hilbert space. Denote by B(H) the algebra of all bounded linear operators on H, and by I(H) the set of all idempo-tents in B(H). Suppose that Φ is a surjective map from B(H) onto itself. If for every λ ∈ {-1,1,2,3,1/2,1/3} and A, B ∈ B(H), A - λB ∈ I(H) (?) Φ(A) - λΦ(B) ∈ I(H), then Φ is a Jordan ring automorphism, i.e. there exists a continuous invertible linear or conjugate linear operator T on H such that Φ(A) = TAT-1 for all A ∈ B(H), or Φ(A) = TA*T-1 for all A ∈ B(H); if, in addition, A-iB ∈ I(H) (?) Φ(A) -ιΦ(B) ∈ I(H), here ι is the imaginary unit, then Φ is either an automorphism or an anti-automorphism.
CUI Jianlian & HOU Jinchuan Department of Mathematical Science, Tsinghua University, Beijing 100084, China