The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.
Raw material blending process is an essential part of the cement production process. The main purpose of the process is to guarantee a certain oxide composition for the raw meal at the outlet of the mill by regulating the four raw materials. But the chemical compositions of raw materials vary from time to time, resulting in difficulties to control the oxide compositions to a predefined value. Therefore, a novel algorithm to estimate the chemical compositions of the raw materials is developed. The paper mainly consists of two parts. In model construction part, a novel constrained least square model is proposed to overcome the deviation introduced by long-term drift of the material components, and the model parameters are estimated with an online strategy. And in validation part, the approach is implemented to two examples including datasets from simulation model and the actual industrial process. The final results show the effectiveness of the proposed method.