The lifestyle transition of fungi,defined as switching from taking organic material as nutrients to pathogens,is a fundamental phenomenon in nature.However,the mechanisms of such transition remain largely unknown.Here we show microRNA-like RNAs(milRNAs)play a key role in fungal lifestyle transition for the first time.We identified milRNAs by small RNA sequencing in Arthrobotrys oligospora,a known nematode-trapping fungus.Among them,7 highly expressed milRNAs were confirmed by northern-blot analysis.Knocking out two milRNAs significantly decreased A.oligospora’s ability to switch lifestyles.We further identified that two of these milRNAs were associated with argonaute protein QDE-2 by RNA-immunoprecipitation(RIP)analysis.Three of the predicted target genes of milRNAs were found in immunoprecipitation(IP)products of QDE-2.Disruption of argonaute gene qde-2 also led to serious defects in lifestyle transition.Interestingly,knocking out individual milRNAs or qde-2 lead to diverse responses under different conditions,and qde-2 itself may be targeted by the milRNAs.Collectively,it indicates the lifestyle transition of fungi is mediated by milRNAs through RNA interference(RNAi)machinery,revealing the wide existence of miRNAs in fungi kingdom and providing new insights into understanding the adaptation of fungi from scavengers to predators and the mechanisms underlying fungal infections.
Proteins are essential parts of living organisms and participate in virtually every process within cells. As the genomlc sequences for increasing number of organisms are completed, research into how proteins can perform such a variety of functions has become much more intensive because the value of the genomic sequences relies on the accuracy of understanding the encoded gene products. Although the static three-dimensional structures of many proteins are known, the functions of proteins are ulti- mately governed by their dynamic characteristics, including the folding process, conformational fluctuations, molecular mo- tions, and protein-ligand interactions. In this review, the physicochemical principles underlying these dynamic processes are discussed in depth based on the free energy landscape (FEL) theory. Questions of why and how proteins fold into their native conformational states, why proteins are inherently dynamic, and how their dynamic personalities govern protein functions are answered. This paper will contribute to the understanding of structure-function relationship of proteins in the post-genome era of life science research.