A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.
Micro-bending tests were performed to investigate effects of thickness and grain size on material behavior in sheet metal forming.The rolling brass C2680 foil was selected as the experimental material,and it was annealed to eliminate the work-hardening and get different grain sizes.A device was specially designed for three-point bending with two load sensors.The results show that the bending force increases with increasing the punch displacement.With the foil of same thickness,a smaller punch radius leads to a larger bending force.When the grain size increases,the bending force becomes smaller.Size effects are observed obviously.These results have been analyzed by work-hardening,Hall-Petch equation and free surface effect.
To decrease the size effects of friction in microforming, three kinds of surface coatings, such as diamond-like carbon(DLC), TiN and MoS2, were deposited on surfaces of dies with plasma based ion implantation and deposition(PBII D) method and magnetron sputtering technique, respectively. The tribological behavior of surface coatings was analyzed considering plastic deformation of specimen at contact interface. The analyses indicate that there is a lower coefficient of friction(COF) and a high wear resistance under the condition of large strain/stress when using the DLC film. The graphitization of DLC film occurs after 100 times of tests. The mechanism of graphitization was analyzed considering energy induced by friction work. The effects of DLC film properties on qualities of micro-deep drawn parts were investigated by analyzing the reduction of wall thickness, etc. The results indicate that DLC film is very helpful for improving the qualities of the micro-parts.