A new passive adaptive shock absorber of the landing gear with double-cavity and dual-damping is studied. Its mathematical model and the virtual prototype are established based on the dynamics simulation software ADAMS. The landing dynamic characteristics and the effect of the parameters on the proposed adaptive shock absorber are analyzed. The results show that the proposed adaptive shock absorber has the slightly better landing performance at the normal load case and much less overload at the crudely landing case than the shock absorber with single-cavity and variable orifice. It also can be concluded that the overload of the proposed adaptive shock absorber can be reduced through increasing the volumes of both cavities or decreasing the pressure of the high pressure cavity or increasing the pressure of the low pressure cavity.
Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.