您的位置: 专家智库 > >

北京市自然科学基金(4132078)

作品数:6 被引量:53H指数:4
相关作者:王澄刘德荣魏庆来更多>>
相关机构:中国科学院自动化研究所广东省电力设计研究院广州供电局有限公司更多>>
发文基金:北京市自然科学基金国家自然科学基金中国博士后科学基金更多>>
相关领域:自动化与计算机技术理学建筑科学经济管理更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 2篇自动化与计算...
  • 2篇理学
  • 1篇经济管理
  • 1篇电气工程
  • 1篇建筑科学

主题

  • 3篇电网
  • 3篇智能电网
  • 2篇自适应动态规...
  • 2篇最优控制
  • 2篇线性系
  • 2篇非线性
  • 2篇非线性系统
  • 2篇OPTIMA...
  • 2篇APPROA...
  • 2篇CHAOTI...
  • 2篇储能
  • 2篇储能设备
  • 1篇动态规划
  • 1篇智能小区
  • 1篇商业模式
  • 1篇基于数据
  • 1篇NEURAL...
  • 1篇NONLIN...
  • 1篇USING
  • 1篇CLASS

机构

  • 3篇中国科学院自...
  • 2篇广东省电力设...
  • 2篇广州供电局有...
  • 1篇中国能源建设...

作者

  • 3篇魏庆来
  • 3篇刘德荣
  • 3篇王澄

传媒

  • 2篇Chines...
  • 1篇自动化学报
  • 1篇控制工程
  • 1篇Scienc...
  • 1篇电力系统保护...

年份

  • 3篇2015
  • 3篇2014
6 条 记 录,以下是 1-6
排序方式:
带有储能设备的智能电网电能迭代自适应动态规划最优控制被引量:10
2014年
智能电网是新一代电网建设的目标,也是国际电力工业界的共同选择.本文研究在储能设备接入电网情况下,建立一套基于自适应动态规划(Adaptive dynamic programming,ADP)的智能电网电能自适应优化控制的理论与方法,实现电网发电端以及用户端的智能交互,开辟对智能电网供需优化匹配与调控方法的新途径.论文首先给出动态规划的最优性原理以及带有储能设备智能电网的运行方式并提出优化目标;然后,设计新型迭代自适应动态规划方法实现对储能设备的最优控制,并证明自适应动态规划方法的收敛性,在理论上保证了对智能电网电能的优化;最后,给出仿真例子显示出所提出控制方法的有效性.
王澄刘德荣魏庆来赵冬斌夏振超
关键词:智能电网自适应动态规划储能设备最优控制非线性系统
Policy iteration optimal tracking control for chaotic systems by using an adaptive dynamic programming approach被引量:1
2015年
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.
魏庆来刘德荣徐延才
A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm
2014年
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
宋睿卓肖文栋魏庆来
智能小区商业模式及运营策略分析被引量:24
2015年
现代化智能用电小区是智能电网建设的重要组成部分。在综合考虑了电、水、气高级量测、微电网分布式能源管理、电动汽车充电及相关节能技术的基础上,根据智能小区的技术发展现状,对智能小区商业模式从投资分摊类型、盈利模式和效益测算分析三个方面进行了探讨,并详细分析了各个方案的优缺点。此外针对基于运营模式研究的技术路线,分别从电力公司主导型、物业公司主导型、第三方公司主导型三个方面进行了分析对比,为用户及投资决策者提供了一个全面的决策信息支持。
王澄徐延才魏庆来赵冬斌刘德荣
关键词:智能电网智能小区商业模式
A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems被引量:8
2015年
In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic nonlinear systems. The idea is to use an iterative adaptive dynamic programming(ADP) technique to construct the iterative control law which optimizes the iterative Q function. When the optimal Q function is obtained, the optimal control law can be achieved by directly minimizing the optimal Q function, where the mathematical model of the system is not necessary. Convergence property is analyzed to show that the iterative Q function is monotonically non-increasing and converges to the solution of the optimality equation. It is also proven that any of the iterative control laws is a stable control law. Neural networks are employed to implement the policy iteration based deterministic Q-learning algorithm, by approximating the iterative Q function and the iterative control law, respectively. Finally, two simulation examples are presented to illustrate the performance of the developed algorithm.
WEI QingLaiLIU DeRong
关键词:Q-LEARNING
基于数据的智能电网电能自适应优化调控被引量:10
2014年
智能电网是新一代电网建设的目标,也是国际电力工业界的共同选择。首次提出基于数据的自适应动态规划的智能电网电能自适应优化控制方法。无需智能电网的模型,采用智能电网数据获得智能电网的最优控制策略,有效地克服了智能电网系统模型难以建立的困难。首先,给出了智能电网的具体工作原理,列出了智能电网储能设备,风能、太阳能等清洁能源的运行原理。其次给出了基于数据的智能电网电能自适应优化调控方案。然后讨论了基于神经网络的自适应优化具体实现方案。最后给出仿真实例证明方法的有效性。
王澄魏庆来赵冬斌刘德荣夏振超
关键词:智能电网自适应动态规划储能设备最优控制非线性系统
共1页<1>
聚类工具0