In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively.
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.