Time-domain diffuse optical tomography can efficiently reconstruct optical parameters which can be further applied in diagnosing early breast cancer. Nevertheless, the performances of reconstructed imaging are badly influenced by different Jacobian magnitudes of absorption coefficient and reduced scattering coefficient. With the introudction of a relative data type based on generalized pulse spectrum technique, an efficient Jacobian scaling method is proposed. The interrelated simulated validation is also revealed for the enhancing performances.
A two-dimensional (2D) shape-based approach of image reconstruction using a boundary element method is developed for diffuse optical tomography (DOT). The experimental validation uses a four-channel time- correlated single photon counting (TCSPC) system for detection and an intensity data-type for image reconstruction. The optical and geometric parameters are simultaneously recovered using a difference imaging scheme. Results demonstrate that the proposed DOT modality is a promising methodology of in vivo reconstruction of the optical structures of tissues.