The microstructure evolution during the liquid-liquid phase transformation of Al-Pb alloy was calculated. The numerical results indicate that the interaction between the minority phase droplets has effect on the nucleation process of the droplets, and the effect increases with the cooling rate and the content of Pb.
A model has been developed to describe the microstructure evolution in the atomized droplets of Cu-Fe alloy during cooling through the metastable miscibility gap. Calculations have been performed for Cu85Fe15 alloy to investigate the process of liquid-liquid phase transformation. The numerical results indicate that the minority phase droplets are nucleated in a temperature region around the peak of the supersaturation. The average radius of the Fe-rlch droplets decreases and the number density of the minority phase droplets increases with decreasing the atomized droplet size. The simulated results were compared with the experimental ones. The kinetic process of the liquid-liquid phase transformation was discussed in detail.
Jie HE and Jiuzhou ZHAOInstitute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China