The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
This paper studies the problem of a functionally graded piezoelectric circular plate subjected to a uniform electric potential difference between the upper and lower surfaces. By assuming the generalized displacements in appropriate forms,five differential equations governing the generalized displacement functions are derived from the equilibrium equations. These displacement functions are then obtained in an explicit form,which still involve four undetermined integral constants,through a step-by-step integration which properly incorporates the boundary conditions at the upper and lower surfaces. The boundary conditions at the cylindrical surface are then used to determine the integral constants. Hence,three-dimen sional analytical solutions for electrically loaded functionally graded piezoelectric circular plates with free or simply-supported edge are completely determined. These solutions can account for an arbitrary material variation along the thickness,and thus can be readily degenerated into those for a homogenous plate. A numerical example is finally given to show the validity of the analysis,and the effect of material inhomogeneity on the elastic and electric fields is discussed.
The analytical solutions of the stresses and displacements were obtained for fixed-fixed anisotropic beams subjected to uniform load. A stress function involving unknown coefficients was constructed, and the general expressions of stress and displacement were obtained by means of Airy stress function method. Two types of the description for the fixed end boundary condition were considered. The introduced unknown coefficients in stress function were determined by using the boundary conditions. The analytical solutions for stresses and displacements were finally obtained. Numerical tests show that the analytical solutions agree with the FEM results. The analytical solution supplies a classical example for the elasticity theory.
The dynamic responses of a multilayer piezoelectric infinite hollow cylinder under electric potential excitation were obtained. The method of superposition was used to divide the solution into two parts, the part satisfying the mechanical boundary conditions and continuity conditions was first obtained by solving a system of linear equations; the other part was obtained by the separation of variables method. The present method is suitable for a multilayer piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric electric excitation. Dynamic responses of stress and electric potential are finally presented and analyzed.
An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical displacements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction factor (k) is introduced to modilfy both the shear stress and the electric displacement of each layer. And the detailed mathematical derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those obtained from the exact 2D solution. Excellent agreements between the present model prediction with k=-8/9 and the exact solutions are observed for the resonant frequencies.
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media. The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case Of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.