The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.
Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off-equatorial North Pacific Ocean before and after 1976. The investigation shows that after 1976 in the off-equatorial North Pacific Ocean, there is a larger area where the necessary conditions for baroclinic and/or barotropic instability are satisfied, which may help oceanic anomaly signals propagating in the form of Rossby waves to absorb energy from the mean currents so that they can grow and intensify. The baroclinic energy conversion rate in the North Pacific after 1976 is much higher than before 1976, which indicates that the baroclinic instability has intensified since 1976. Prom another perspective, the instability analysis gives an explanation of the phenomena that the ENSO-related oceanic anomaly signal in the North Pacific has intensified since 1976.
A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.