Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and sufficient conditions on Ω and f(x) which ensure the existence, or multiplicities of nonnegative solutions for the problem under consideration.
This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to problems is given.We prove that if the uniqueness and non-degeneracy results are valid for positive solutions of a class of semi-linear elliptic equations,then they are still valid when one perturbs the differential operator a little bit.As consequences,some uniqueness results of positive solutions under the domain perturbation are also obtained.
Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching phenomenon and the existence of global classical solution to the above problem are established. Also, the life span of the quenching solution is estimated or evaluated for some domains.