Development of versatile theranostic agents that simultaneously integrate therapeutic and diagnostic features remains a clinical urgent.Herein,we aimed to prepare uniform PEGylated(lactic-co-glycolic acid)(PLGA)microcapsules(PB@(Fe_(3)O_(4)@PEG-PLGA)MCs)with superparamagnetic Fe3O4 nanoparticles embedded in the shell and Prussian blue(PB)NPs inbuilt in the cavity via a premix membrane emulsification(PME)method.On account of the eligible geometry and multiple load capacity,these MCs could be used as efficient multi-modality contrast agents to simultaneously enhance the contrasts of US,MR and PAT imaging.In-built PB NPs furnished the MCs with excellent photothermal conversion property and embedded Fe_(3)O_(4)NPs endowed the magnetic location for fabrication of targeted drug delivery system.Notably,after further in-situ encapsulation of antitumor drug of DOX,(PB+DOX)@(Fe_(3)O_(4)@PEG-PLGA)MCs possessed more unique advantages on achieving near infrared(NIR)-responsive drug delivery and magnetic-guided chemo-photothermal synergistic osteosarcoma therapy.In vitro and in vivo studies revealed these biocompatible(PB+DOX)@(Fe_(3)O_(4)@PEG-PLGA)MCs could effectively target to the tumor tissue with superior therapeutic effect against the invasion of osteosarcoma and alleviation of osteolytic lesions,which will be developed as a smart platform integrating multi-modality imaging capabilities and synergistic effect with high therapy efficacy.
The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.