The development of the fertilization pore during oogenesis of the fern Ceratopteris thalictroides was followed using transmission electron microscopy. The newly formed egg is appressed closely to the adjacent cells. There are well-developed plasmodesmata between the egg and the ventral canal cell, but none between the egg and the jacket cells of the archegonium. During maturation, a separation cavity is formed around the egg. However, a pore region persistently connects the egg and the ventral canal cell. The extra egg membrane is formed by deposition of sheets of endoplasmic reticulum (ER), but no ER is deposited on the inner surface of the pore region. Thus, a fertilization pore, covered by a layer of plasmalemma, is formed. The ventral canal cell undoubtedly participates the formation of the fertilization pore, probably by absorbing the sheets of ER beneath the pore region. The functional significance of the ventral canal cell in formation of the fertilization pore is discussed. The features of the mature egg include that abundant concentric membranes and osmiophilic vesicles occur in the cytoplasm of the mature egg. The initial, round nucleus of the egg eventually becomes cup-shaped. This investigation gives some new insights about the cells participating oogenesis in ferns.
The cytological events, including nuclear fusion, digestion of male organelles and rebuilding of the plasmalemma and cell wall, during zygote formation of the fern Ceratopteris thalictroides (L.) Brongn. are described based on the observations of transmission electron microscopy. When the spermatozoid enters the egg and contacts the cytoplasm, the male chromatin relaxes continually. The microtubular ribbon (MTr) is separated from the male nucleus and then an envelope reappears around the male nucleus. During nuclear fusion, the egg nucleus becomes highly irregular and extends some nuclear protrusions. It is proposed that the protrusions fuse with the male nucleus actively. After nuclear fusion the irregular zygotic nucleus contracts gradually. It becomes spherical before the zygote divides. The male chromatin is identifiable as fibrous structure in the zygotic nucleus in the beginning, but it gradually becomes diffused completely. The male organelles, including the MTr, multilayered structure, flagella and the male mitochondria are finally digested in the zygotic cytoplasm. Finally a new plasmalemma and cell wall are formed outside the protoplast. The organelles in the zygote are rearranged, which produces a horizontal polarity zygote. The zygote divides with an oblique-vertical cell plate facing the apical notch of the gametophyte.
Jian-Guo Cao Quan-Xi Wang Nai-Ying Yang Wen-Mei Bao
The ultrastructure of the mature egg and fertilization in the fern Ceratopteris thafictroides (L.) Brongn. were observed by transmission electron microscopy. The results revealed that the mature egg possesses an obvious egg membrane at the periphery of the egg. Furthermore, a fertilization pore was identified in the upper egg membrane of the mature egg. The structure of the pore is described for the first time. The fertilization experiment indicated that spermatozoids crowd into the cavity above the egg through the neck canal of the archegonium; however, only one of these can penetrate into the egg through the fertilization pore. Immediately on penetration of the spermatozoid, the egg begins to shrink. The volume of the fertilized egg decreases to almost one-half that of the unfertilized egg. As a result, the protoplasm of the fertilized egg becomes dense and opaque, which may lead to a situation where the organelles of both the egg and the fertilizing spermatozoid become indistinguishable. Simultaneously, abundant vesicles containing concentric membranes or opaque materials appear near the fertilization pore in the cytoplasm of the fertilized egg. These vesicles are considered to act as a barrier that prevents polyspermy. The present study provides a new insight into the ultrastructure of the mature egg and the cytological mechanism of fertilization in ferns.