A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and cell-micelles remain unclear. In the present study, we aimed to assess the hemocompatibility and cytocompatibility of PEOz-PLA micelles in order to clarify its potentials as carriers for drug delivery. Blood compatibility of the micelles was evaluated by hemolysis analysis, coagulation test, platelet activation investigation and assessment of their interaction with protein. The results revealed that PEOz-PLA micelles had a favorable blood compatibility. In addition, PEOz-PLA micelles showed a good cytocompatibility through SRB assay, presenting only negligible cytotoxicity when incubated with KBv cells. Taken together, PEOz-PLA micelles could be used as a hemocompatible and cytocompatible drug carrier for intravenous administration.
The purpose of this work was to explore the feasibility of ethosomes for improving the anti-arthritic efficacy of topically administered tetrandrine, a bisbenzylisoquinoline alkaloid. Ethosomes were prepared by using the transmembrane pH-gradient loading method and characterized by mean diameter, morphology and entrapment efficiency. The prepared tetrandrine-loaded ethosomes exhibited spherical shape with about 78 nm of average diameter and entrapment efficiency of (52.87±3.81)%, whereas the liposomes had bigger size (99 nm) and higher entrapment efficiency (98.80±0.01)%. In addition, ethosomes exhibited favorable and enhanced penetration behavior as compared with liposomes. More importantly, tetrandrine-loaded ethosomes had a significantly better anti-adjuvant arthritis efficacy in rats compared to liposomes formulation, but no significant difference in the anti-arthritic efficacy between tetrandrine-loaded ethosomes and commercial dexamethasone ointment was observed. These results suggest that ethosomes would be a promising nanocarrier for topical delivery of tetrandrine across skin.