Salmonella (S.) typhi is an important intracellular pathogen. Among the more than 2,300 closely-related Salmonella serovars bacteria recognized, S. typhi is the only one that is pathogenic exclusively for humans, in whom it causes typhoid or enteric fever. The pathogen has been around for many years and many studies have been done in an effort to combat it. Molecular and biologic features of S. typhi and host factors and immune responses involved in Salmonella invasion have been extensively studies. Vaccines that have been developed most notably are Vi polysaccharide and Ty21a. However, as the results show, there is still a long way to go. It is also shown that multi-drug resistance has occurred to the few available antibiotics. More and more studies have shown that Salmonella can be used as a vaccine vector carrying antigens of other pathogens. This has been promising in that the immune system can be elicited in response to both the Salmonella bacteria and the antigen of the pathogen in question. This review aims to highlight some of the milestones attained in the fight against the disease from the time S. typhi was seen as a pathogen causing typhoid fever to the use of Salmonella as a vaccine vector. Cellular & Molecular Immunology.
L-ficolin, one of lectin families, is a recently identified complement factor that initiates lectin pathway of complement. Little is known about its role in viral hepatitis. In the present study, we found that L-ficolin in serum from 103 patients with hepatitis C virus (HCV), were significantly higher than that in 150 healthy controls. We further found that L-ficolin expressions were significantly increased in vitro study by HCV JFH-1 infected human hepatocyte cell line Huh7.5.1. Investigation of the mechanisms of the L-ficolin action on HCV demonstrated that L-ficolin protein could recognize and bind to envelope glycoproteins E1 and E2 of HCV, activating the lectin complement pathway-mediated cytolytic activity in HCV-infected hepatocyte. This interaction between L-ficolin and HCV E1 and E2 glycoproteins was attributed to the N-glycans of E1 and E2. These findings provide new insights into the biological functions of L-ficolin in clinically important hepatic viral diseases.