(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.
The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.