您的位置: 专家智库 > >

中国博士后科学基金(2013M530148)

作品数:12 被引量:56H指数:5
相关作者:高洪元刁鸣高璐刘丹丹曹金龙更多>>
相关机构:哈尔滨工程大学北京邮电大学更多>>
发文基金:中国博士后科学基金国家自然科学基金中央高校基本科研业务费专项资金更多>>
相关领域:电子电信自动化与计算机技术理学更多>>

文献类型

  • 12篇期刊文章
  • 2篇会议论文

领域

  • 8篇电子电信
  • 6篇自动化与计算...
  • 3篇理学

主题

  • 5篇频谱
  • 4篇认知无线
  • 4篇认知无线电
  • 4篇无线
  • 4篇无线电
  • 4篇QUANTU...
  • 3篇频谱分配
  • 3篇量子
  • 3篇COGNIT...
  • 2篇频谱感知
  • 1篇多目标
  • 1篇多用户
  • 1篇多用户检测
  • 1篇信号
  • 1篇信号源
  • 1篇信源
  • 1篇压缩感知
  • 1篇优化算法
  • 1篇噪声
  • 1篇正交匹配追踪

机构

  • 8篇哈尔滨工程大...
  • 1篇北京邮电大学

作者

  • 8篇高洪元
  • 4篇刁鸣
  • 1篇张志强
  • 1篇刘丹丹
  • 1篇高璐
  • 1篇丁兆明
  • 1篇曹金龙

传媒

  • 3篇计算机工程
  • 2篇Journa...
  • 1篇物理学报
  • 1篇计算机工程与...
  • 1篇应用科学学报
  • 1篇哈尔滨工程大...
  • 1篇Journa...
  • 1篇中南大学学报...
  • 1篇China ...

年份

  • 1篇2019
  • 1篇2017
  • 2篇2016
  • 4篇2015
  • 4篇2014
  • 2篇2013
12 条 记 录,以下是 1-10
排序方式:
文化蛙跳算法及其在频谱感知中的应用被引量:3
2013年
为了有效求解连续优化问题,基于混合蛙跳算法和文化算法的智能演进原理,提出一种新的全局搜索算法即文化蛙跳算法。使用4个经典的基准函数进行测试,然后,将文化蛙跳算法应用于频谱感知这个认知无线电领域的热点问题,提出基于文化蛙跳算法的协作频谱感知方法。使用文化蛙跳算法和3种智能算法对频谱感知问题进行仿真。研究结果表明:所提算法基于知识策略和信息交流设计新的跳跃方程,有很强的开发探索能力,可显著改进混合蛙跳算法的性能;文化蛙跳算法的收敛速度和收敛精度都比改进混合蛙跳算法、细菌觅食算法以及粒子群优化等智能算法的高;文化蛙跳算法比3种智能频谱感知算法的收敛速度提高最少1.5倍,且检测概率最大,验证了该算法的有效性。
高洪元崔闻
关键词:认知无线电频谱感知基准函数细菌觅食算法
IIR Digital Filter Design Based on Cultural Quantum-inspired Flower Pollination Algorithm
In order to resolve the multi-parameter optimization problem of infinite impulse response(IIR) digital filter ...
Hongyuan GaoYansong LiangDandan LiuMing Diao
认知无线电中的量子蛙跳频谱分配被引量:3
2014年
为了有效求解离散优化问题,将量子信息理论引入混合蛙跳算法,提出一种新的组合优化算法——量子蛙跳算法.量子蛙跳算法使用新的量子跳跃方程完成整个量子蛙群的协同演进,能快速搜索到全局最优位置.通过对基准函数的测试验证了其高效性,并使用量子蛙跳算法设计了一种认知无线电频谱分配算法.通过仿真实验对比了所提出的量子蛙跳算法与遗传算法、量子遗传算法、粒子群算法、混合蛙跳算法和敏感图论着色算法等多种算法在不同网络效益函数下实现频谱分配的性能.在3种网络效益函数下进行的仿真结果表明,所提出的算法能较好地找到最优解,且在不同的网络效益函数下均优于已有的敏感图论着色频谱分配算法和智能频谱分配算法.
高洪元曹金龙
关键词:认知无线电频谱分配网络效益
基于特征空间算法的非圆相干信源DOA估计被引量:3
2014年
针对非圆相干信号的解相干问题,给出了一种新的特征空间算法(eigenspace-direction of arrival,ES-DOA)。利用信号源的非圆特性,虚拟地扩展了阵元个数,使阵列信息增至扩展前的两倍,对信号源数目的估计突破了M-1(M为阵元数)的限制;将信息量加倍后的协方差矩阵加以重构,给出一种新的特征空间算法进行解相干,最大限度地利用了噪声子空间与信号子空间的信息,避免了空间平滑思想的阵列孔径损失及最大似然算法运算量过大的问题;该方法还对信号源功率进行了估计,提高了对小能量信号的估计成功概率。仿真结果表明,该方法对波达方向估计具有很好的鲁棒性。
刁鸣丁兆明高洪元李晨琬
关键词:DOA估计相干信源TOEPLITZ矩阵MUSIC算法
Thinned Array Based on Quantum-inspired Particle Swarm Optimization
In order to solve the thinned difficulty of large arrays, a novel thinned array method based on quantum-inspir...
H.Y.GaoY.N.DuC.W.Li
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation被引量:4
2013年
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
GAO Hong-yuanCAO Jin-long
Membrane-inspired quantum bee colony optimization and its applications for decision engine被引量:3
2014年
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
高洪元李晨琬
基于新量子蜂群算法的鲁棒多用户检测被引量:4
2016年
为求解冲击噪声环境下鲁棒多用户检测的最优解,基于人工蜂群理论和量子计算,提出一种新的量子蜂群优化算法。该算法使用2种量子觅食行为完成整个量子蜂群的协同合作,快速找到最优的蜜源位置。在冲击噪声环境下,基于简单量子蜂群算法设计量子蜂群鲁棒多用户检测器,并与基于遗传算法、量子遗传算法和粒子群算法的多用户检测器进行比较。仿真结果表明,该算法能够较好地找到最优解,且误码率较低。
高洪元梁炎松刘丹丹
关键词:码分多址多用户检测冲击噪声
Antenna Selection and Power Allocation Design for 5G Massive MIMO Uplink Networks被引量:10
2019年
Massive MIMO is one of the key technologies in future 5G communications which can satisfy the requirement of high speed and large capacity. This paper considers antenna selection and power allocation design to promote energy conservation then provide good quality of service(QoS) for the whole massive MIMO uplink network. Unlike previous related works, hardware impairment, transmission efficiency, and energy consumption at the circuit and antennas are involved in massive MIMO networks. In order to ensure the QoS, we consider the minimum rate constraint for each user and the system, which increases the complexity of power allocation problem for maximizing energy and spectral efficiency in massive MIMO system. To this end, a quantum-inspired social emotional optimization(QSEO) algorithm is proposed to obtain the optimal power control strategy in massive MIMO uplink networks. Simulation results assess the great advantages of QSEO which previous strategies do not have.
Hongyuan GaoYumeng SuShibo ZhangMing Diao
关键词:MASSIVEMIMOALLOCATIONEMOTIONAL
狼群优化的神经网络频谱感知算法被引量:8
2016年
提出了一种基于狼群优化的人工神经网络频谱感知方法,实现了具有神经网络最优结构的神经网络频谱感知算法。该算法在包含自组织神经网络的频谱感知算法的基础上,具体阐述了训练样本的生成,神经网络的训练以及对神经网络训练阶段结束后所得到的权值矩阵运用狼群优化方法进行进一步的优化处理的过程。实验结果表明,狼群优化的自组织神经网络频谱感知算法与自组织神经网络的频谱感知算法相比,具有更好的频谱感知性能。
刁鸣钱荣鑫高洪元
关键词:神经网络频谱感知协作式
共2页<12>
聚类工具0