A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and after PEHA loading were characterized by X-ray powder diffraction,N2adsorption/desorption,thermal gravimetric analysis and scanning electron microscope to investigate the textural and thermo-physical properties.CO2adsorption performance was evaluated in a fixed bed adsorption system.Results indicated that the structure of MCM-41 was preserved after loading PEHA.Surface area and total pore volume of PEHA loaded MCM-41 decreased with the increase of loading.The working adsorption capacity of CO2could be significantly improved at 60%of PEHA loading and 75°C.The effect of the height of adsorbent bed was investigated and the best working adsorption capacity for MCM-41-PEHA-60 reached 165 mg·(g adsorbent)-1at 75°C.Adsorption/desorption circle showed that the CO2working adsorption capacity of MCM-41-PEHA kept stable.
Methane partial oxidation to methanol (MPOM) using dielectric barrier discharge over a Fe2O3-CuO/γ-Al2O3 catalyst was performed.The multicomponent catalyst was combined with plasma in two different configurations,i.e.,in-plasma catalysis (IPC) and post-plasma catalysis (PPC).It was found that the catalytic performance of the catalysts for MPOM was strongly dependent on the hybrid configuration.A better synergistic performance of plasma and catalysis was achieved in the IPC configuration,but the catalysts packed in the discharge zone showed lower stability than those connected to the discharge zone in sequence.Active species,such as ozone,atomic oxygen and methyl radicals,were produced from the plasma-catalysis process,and made a major contribution to methanol synthesis.These active species were identified by the means of in situ optical emission spectra,ozone measurement and FT-IR spectra.It was confirmed that the amount of active species in the IPC system was greater than that in the PPC system.The results of TG,XRD,and N2 adsorption-desorption revealed that carbon deposition on the spent catalyst surface was responsible for the catalyst deactivation in the IPC configuration.
Increased attention has been given to the fate of pollutants such as polycyclic aromatic hydrocarbons (PAHs) introduced to the wastewater treatment plants.Dissolved and adsorbed PAHs were detected in the centralized wastewater treatment plant of a chemical industry zone in Zhejiang Province,China.The most abundant PAHs were the low molecular weight PAHs (e.g.,Acy,Ace,Flu and Phe),accounting for more than 80% of the total 16 PAHs in each treatment stage.Phase partitioning suggested that the removal of PAHs in every treatment stage was influenced greater by the sorption of particles or microorganisms.The removal efficiencies of individual PAHs ranged between 4% and 87% in the primary sedimentation stage,between 1% and 42% in anaerobic hydrolysis stage,between <1% and 70% in aerobic bio-process stage,between 1.5% and 80% in high-density clarifier stage,and between 44% and 97% in the whole treatment process.Mass balance calculations in primary stage showed significant losses for low molecular weight PAHs and relatively good agreements for high molecular weight PAHs as well as in anaerobic hydrolysis,high-density clarifier stage and sludge stream for most PAHs.Great gains of 60%-150% were obtained for high molecular weight PAHs in aerobic bio-process stage due to biosorption and bioaccumulation.Our investigations found that PAHs entering the wastewater treatment plant (WWTP) could be derived from the dyeing chemical processes as the byproducts,and the contribution supported by the largest dyeing chemical group was up to 48%.
In this work,the regeneration mechanism of potassium carbonate solution after absorption of CO2 using ion-exchange membrane electrolysis was presented.The solutions of potassium carbonate(K2CO3) and potassium bicarbonate(KHCO3) were used to simulate the solution after absorbing CO2.Experiments were carried out at various electrodes,temperatures and current densities.The results indicate that the membrane electrolysis can in-crease concentration ratio of K2CO3 and KHCO3,and achieve 100%conversion.In this process,not only CO2 is desorbed from carbonate solution,but also hydrogen,as a byproduct,is generated at the cathode,which is the main contributor to reduce energy consumption.Thus,the membrane electrolysis is valuable in the regeneration of the K2CO3 absorbent.