Metastasis is a multistep process involving modification of morphology to suit migration, reduction of tumor cell adhesion to the extracellular matrix, increase of cell mobility, tumor cell resistance to anoikis, and other steps. MicroRNAs are well-suited to regulate tumor metastasis due to their capacity to repress numerous target genes in a coordinated manner, thereby enabling their intervention at multiple steps of the invasion-metastasis cascade. In this study, we identified a microRNA exemplifying these attributes, miR-124, whose expression was reduced in aggressive MDA-MB-231 and SK-3rd breast cancer cells. Down-regulation of miR-124 expression in highly aggressive breast cancer cells contributed in part to DNA hypermethylation around the promoters of the three genes encoding miR-124. Ectopic expression of miR-124 in MDA-MB-231 cells suppressed metastasis-related traits including formation of spindle-like morphology, migratory capacity, adhesion to fibronectin, and anoikis. These findings indicate that miR-124 suppresses multiple steps of metastasis by diverse mechanisms in breast cancer cells and suggest a potential application of miR-124 in breast cancer treatment.
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neo adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal manipulation may provide a powerful cell fate- and neovascularization-controUing tool that could have important applications in treatment of retinal diseases.
Minhua ZhengZifeng ZhangXingcheng ZhaoYuqiang DingHua Han