结合恒温滚环扩增(rolling circle amlification,RCA)、单链特异性核酸外切酶Ⅰ(exonucleaseⅠ,ExoⅠ)和阳离子共轭聚合物(Cationic conjugated polymer,CCP)荧光共振能量转移(fluorescence reso-nance energy transfer,FRET)技术,建立了一种特异、灵敏的均相检测microRNA(miRNA)的新方法.该方法应用荧光标记探针与RCA扩增的长链DNA产物杂交,当加入CCP时,其与杂交的标记探针通过静电力结合,发生高效的FRET.未杂交的标记探针利用ExoⅠ水解成单核苷酸,其与CCP相互作用力弱,不能发生有效的FRET.基于此,无需分离和洗涤步骤,实现了RCA扩增miRNA的均相检测.方法特异性好,灵敏度高,线性为0.5~20pmol/L,检出限为0.2pmol/L.方法为miRNA均相检测和原位成像分析以及临床诊断提供了新策略.
A novel, homogeneous and sensitive assay for the detection of single nucleotide polymorphisms (SNPs) by integration of rolling circle amplification (RCA) and cationic conjugated polymer (CCP) has been developed and tested. Mutant DNA serves as the template for specifically circularizing a padlock probe (PLP) with a sequence that is complementary to the mutant DNA. Afterwards, the mutant DNA directly acts as the primer to initiate the RCA reaction in the presence of phi29 DNA polymerase that generates a long, tandem single-strand DNA product. During the RCA reaction, fluorescein-labeled dUTPs are incorporated into the RCA products. When the CCP is introduced, efficient FRET from CCP to fluorescein occurs as a result of the strong electrostatic interactions between the CCP and the DNA produced by RCA. The wild-type DNA contains a single base mismatch with PLP with the result that the PLP is not circularized, RCA is not triggered and inefficient FRET results. By measuring the change of the emission intensities of CCP and fluorescein, it was possible to detect the SNP in a homogeneous manner. The method is sensitive and specific enough to detect 0.1 pmol/L mutant DNA and to determine a mutant allele frequency as low as 2.0%.
TANG ZhiYuan CHENG YongQiang DU Qing ZHANG HongXia LI ZhengPing