To assess the indica-japonica differentiation of improved rice varieties, a total of 512 modem varieties including 301 indica and 211 japonica accessions were analyzed using 36 microsatellites. The Fst coefficients ranged from 0.002 to 0.730 among the loci with an average of 0.315. Significant differentiation was detected at 94.4% of the loci studied (P 〈 0.05, pairwise Fst tests), indicating that there was a high level of indica-japonica differentiation within the improved varieties. At 18 loci, about 74%-98% of the alleles of indica and japonica accessions were distributed in two ranges of amplicon length. Linkage disequilibrium analysis showed that the distribution trends were significantly nonrandomly associated. Using the differentiation trends at the 18 loci, microsatellite index (MI) was proposed for discrimination of the two subspecies. When rice accessions with MI value greater than zero were classified as indica, and those with MI value smaller than zero were classified as japonica, about 96.1% of the accessions could be classified. This result agrees with the classification based on morphological-physiological characters, indicating that this method is feasible and effective.
Yongwen QiHongliang ZhangDongling ZhangMeixing WangJunli SunLi DingFenghua WangZichao Li
The quantitative trait loci (QTLs) for the dead leaf rate (DLR) and the dead seedling rate (DSR) at the different rice growing periods after transplanting under alkaline stress were identified using an F2:3 population, which included 200 individuals and lines derived from a cross between two japonica rice cultivars Gaochan 106 and Changbai 9 with microsatellite markers. The DLR detected at 20 days to 62 days after transplanting under alkaline stress showed continuous normal or near normal distributions in F3 lines, which was the quantitative trait controlled by multiple genes. The DSR showed a continuous distribution with 3 or 4 peaks and was the quantitative trait controlled by main and multiple genes when rice was grown for 62 days after transplanting under alkaline stress. Thirteen QTLs associated with DLR were detected at 20 days to 62 days after transplanting under alkaline stress. Among these, qDLR9-2 located in RM5786-RM160 on chromosome 9 was detected at 34 days, 41 days, 48 days, 55 days, and 62 days, respectively; qDLR4 located in RM3524-RM3866 on chromosome 4 was detected at 34 days, 41 days, and 48 days, respectively; qDLR7-1 located in RM3859-RM320 on chromosome 7 was detected at 20 days and 27 days; and qDLR6-2 in RM1340-RM5957 on chromosome 6 was detected at 55 days and 62 days, respectively. The alleles of both qDLR9-2 and qDLR4 were derived from alkaline sensitive parent "Gaochanl06". The alleles of both qDLR7-1 and qDLR6-2 were from alkaline tolerant parent Changbai 9. These gene actions showed dominance and over dominance primarily. Six QTLs associated with DSR were detected at 62 days after transplanting under alkaline stress. Among these, qDSR6-2 and qDSR8 were located in RM1340-RM5957 on chromosome 6 and in RM3752-RM404 on chromosome 8, respectively, which were associated with DSR and accounted for 20.32% and 18.86% of the observed phenotypic variation, respectively; qDSR11-2 and qDSR11-3 were located in RM536-RM479 and RM2596-RM286 on chromosome 11, respectively, which wer
Dongling QiGuizhen GuoMyung-chul LeeJunguo ZhangGuilan CaoSanyuan ZhangSeok-cheol SuhQingyang ZhouLongzhi Han
The continuous growth of lowland rice (LR) in paddy fields supplied with enough water over the years, and of upland rice (UR) in naturally rain-fed soils, has resulted in greater resistance to drought stress in UR compared to LR. To elucidate their differential regulation mechanisms of drought-resistance, genome-wide transcript regulation under drought stress in UR and LR was investigated using cDNA-AFLP. The results indicated that over 90% of gene expression was not affected by drought stress in the two rice genotypes, more than 8% was regulated by drought stress in both, and less than 1% was specifically expressed in UR or LR. Fifty-seven genes were specifically expressed in UR and thirty-eight specifically in LR. Genes specifically expressed in UR included cell rescue and defence genes functioning in drought-resistance, signal transduction molecules, nucleotides and amino acid biosynthesis genes required for plant growth, and the regulatory genes for growth and development. In LR, genes specifically expressed were related to protein and nucleotide degradation. Some genes were upregulated earlier in UR, and downregulated genes were inclined to be downregulated earlier in UR compared to LR, implying that more rapid regulation mechanisms caused earlier responses of UR to drought stress. Expression levels of upregulated genes in UR were higher than those in LR. The differences in gene expression between UR and LR could account for stronger regulation ability, more drought-resistance and superior growth of UR under drought stress compared to LR.
GAO FengHua ZHANG HongLiang WANG HaiGuang GAO Hong LI ZiChao
To investigate genetic diversities among the AA genome Oryza species in the Southeast and South Asia, a total of 428 accessions of the AA genome Oryza species were genotyped using 36 simple sequence repeats (SSR) markers distributed throughout the rice genome. All of the 36 SSR markers generated polymorphic bands, revealing 100% polymorphism. The number of alleles per locus ranged from 3 to 17 with the mean of 8.6. The Nei's genetic diversity index (He) ranged from 0.337 at RM455 to 0.865 at RM169 with an average value of 0.650. The genetic diversity of the AA genome Oryza species in the Southeast Asia was obviously higher than that in the South Asia. Among the detected Oryza species in the South and Southeast Asia, O. rufipogon showed the highest genetic diversity. Meanwhile, a higher genetic differentiation (Fst) was found among the detected Oryza species in the Southeast Asia than in the South Asia. The Fst value between O. nivara and O. sativa was the highest. The results from the number of specific alleles, specific loci, and allele frequency confirmed the greater genetic variation among the detected species. In addition, the specific allele in RM161 displayed higher frequency (0.193), suggesting its important function in identifying Oryza species of AA genome.