To resolve the problem of missed evanescent waves in a beam focusing system,a hyperlens-based beam focusing device is proposed in this letter.This device can convert the evanescent waves into propagating waves,and then a super-resolution spot is formed at the center of the hyperlens.The working principle of the device is presented,and the way in which the material and structural parameters of the hyperlens affect the resolution and transmission is analyzed in detail.A multibeam focusing device is optimally designed,and the simulated results verify that a nanoscale spot with a diameter of 15.6 nm(corresponding toλ0/24,whereλ0 is the working wavelength in vacuum)is achieved,which is far less than the diffraction limited resolution with a value of 625 nm(1.7λ0).The device is expected to find numerous applications in optical data storage and nano-photolithography,among others.
A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector k modes propagating towards its core. So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit. The layout is proposed for the super-focusing device and its characteristics are investigated theoretically. Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6, which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum). The simulations confirm the effectiveness of the proposed device.