High pressure pyrolysis of melamine has been attracting great interest recently, due to it being considered as a suitable precursor to realize the g-C3N4 and even superhard C3N4. In this work, we studied the detailed pyrolysis behavior of melamine at 22 GPa. Melamine was stable at 800℃, and decomposed to diamond in the form of powder at 1500-2000 ℃ under this pressure condition. At 2000℃, the pure cubic diamond powders with 0.1 0.5 μm grain size were obtained. The diamond particles exhibited euhedral forms and dispersed to each other, we proposed that these novel features were caused by the presence of liquid N2 and NH3 during diamond formation. The high pressure pyrolysis of melamine may provide a new means of producing micrometer-sized diamond powders.
The effect of substrate temperature on the microstructure and the morphology of erbium film are systematically investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). All the erbium films are grown by electron-beam vapor deposition (EBVD). A novel preparation method for observing the cross-section morphology of the erbium film is developed. The films deposited at 200 ℃ have (002) preferred orientation, and the films deposited at 450 ℃ have a mixed (100) and (101) texture, due to the different growth mechanisms of surface energy minimization and recrystallization, respectively. The peak positions and the full widths at half maximum (FWHMs) of erbium diffraction lines (100), (002), and (101) shift towards higher angles and decrease with the increasing substrate temperature in a largely uniform manner, respectively. Also, the lattice constants decrease with increasing temperature. The transition in the film stresses can be used to interpret the changes in peak positions, FWHMs, and lattice constants. The stress is compressive for the as-growth fihns, and is counteracted by the tensile stress formed during the process of temperature cooling to room temperature. The tensile stress mainly originates from the difference in the coefficients of thermal expansion of the substrate-film couple.
Molecular dynamics simulations are conducted to study self-interstitial migration in zirconium. By defining crystal lattice points where more than one atom is present in corresponding Wigner-Seitz cells, as the locations of self-interstitial atoms (LSIAs), three types of events are identified as LSIA migrations:the jump remaining in one 〈1120〉 direction (ILJ), the jump from one 〈1120〉 to another 〈1120〉 direction in the same basal plane (OLJ), and the jump from one basal plane to an adjacent basal plane (OPJ). The occurrence frequencies of the three types are calculated. ILJ is found to be a dominant event in a temperature range from 300 K to 1200 K, but the occurrence frequencies of OLJ and OPJ increase with temperature increasing. The total occurrence frequency of all jump types has a good linear dependence on temperature. Moreover, the migration trajectories of LSIAs in the hcp basal-plane is not what is observed if only conventional one-or two-dimensional migrations exists; rather, they exhibit the feature that we call fraction-dimensional. Using Monte Carlo simulations, the potential kinetic effects of fraction-dimensional migration, which is measured by the average number of lattice sites visited per jump event (denoted by nSPE), are analysed. The significant differences between the nSPE value of the fraction-dimensional migration and those of conventional one-and two-dimensional migrations suggest that the conventional diffusion coefficient cannot give an accurate description of the underlying kinetics of SIAs in Zr. This conclusion could be generally meaningful for the cases where the low-dimensional migration of defects are observed.
Zirconium (Zr) thin films deposited on Si (100) by pulsed laser deposition (PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction (XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser-plasma interaction, the deposition rate significantly decreases from 0.0431 A/pulse at 2 Hz to 0.0189A/pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy (AFM). The root mean square (RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate. The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.